First Physics measurements with ALICE: $dN_{ch}/d\eta$

with the silicon pixel detector

Maria Nicassio
(INFN Bari)
Contents

- Introduction
 - the ALICE experiment at LHC

- First physics with ALICE
 - charged-particle multiplicity and pseudorapidity density
 - first physics papers in preparation within the First Physics group

- Charged-particle pseudorapidity density
 - role of the pixels for first data
 - reconstruction procedure: the "tracklet" algorithm
 - analysis procedure: from measured to physical distribution
 - results on official Monte Carlo samples

- Summary and outlook

1) Charged-particle pseudorapidity density in proton-proton collisions at $\sqrt{s} = 900$ GeV/7 TeV with ALICE at LHC
2) Charged-particle multiplicity distribution in proton-proton collisions at $\sqrt{s} = 900$ GeV/7 TeV with ALICE at LHC
Goals:

- study phase transition to Quark Gluon Plasma
 (Pb-Pb collisions @ $\sqrt{s_{NN}} = 5.5$ TeV + p-p as baseline)
- p-p physics programme (good acceptance for p_t down to 100MeV/c)

The ALICE apparatus

- central barrel detectors (tracking, PID)
- forward rapidity detectors (trigger, muon detectors)
 Silicon Pixel Detector (SPD)
Charged-particle multiplicity and pseudorapidity density:

- first measurements (in p-p collisions) → first physics papers
- global event characterization:
 - collisions at 900 GeV → comparison with existing measurements, sistematics
 - collisions at 7/10/14 TeV → MC configuration, energy dependence

Detectors for “First Physics”:
- ITS, TPC, V0

Data is from:
Advantages (over ITS+TPC full track reconstruction)

- larger acceptance in η and p_T (down to ~ 30 MeV/c)
- simpler and faster alignment and calibration procedures

First results with $\sim 10^4$-10^5 collisions
- after few days of data taking at 900 GeV
- after few hours of data taking at 7/14 TeV!

The Silicon Pixel Detector (SPD) will allow to

- reconstruct points produced by charged particle crossing the detector
- use them to find the interaction vertex position
- use both reconstructed points and vertex to reconstruct charged primary tracks produced in the collision (next slide)
- contribute to event selection with the FastOr

(however triggering on bunch crossing is assumed for first collisions)
“Tracklet” reconstruction algorithm

- looks for pairs of clusters (inner/outer layer) aligned with the reconstructed primary vertex within fiducial windows in θ and ϕ
- iterative procedure

Measured quantities

- multiplicity = number of tracklets
- pseudorapidity $\eta \rightarrow \theta$ angle cluster inner layer

Applied cuts

- need to optimize them (both in p-p and Pb-Pb) wrt
 - efficiency
 - background contamination
Definition:

\[\frac{dN_{ch}}{d\eta} = \langle \text{charged primaries per event} \rangle \]

Corrections needed to get all the charged primaries in the SPD acceptance from the reconstructed tracklets:

- background from secondaries
- tracklet algorithm and detector inefficiency
- detector acceptance
- particles not reaching the sensitive layers
- vertex reconstruction inefficiency
- minimum bias trigger inefficiency

both at track and at event level

Charged primaries:
- particles produced in the collision
- products of strong and em decays

60k p-p events @ 7 TeV B=0.5 T (PYTHIA)

Generated MC distribution

Reconstructed distribution (SPD tracklets)
What do we need to identify?
- among the generated primary particles:
 - **Reconstructed** → particle having a tracklet associated
 - **Reconstructable** → particle producing a signal on both layers
 - **Detectable** → particle crossing both SPD layers

What do we need to calculate corrections?
- from reconstruction
 - tracklet η and labels
 - tracklet multiplicity
 - reconstructed vertex
- from Monte Carlo
 - MC particles
 - track references
 - MC vertex
 - process type
Track level

- **Background**
 - primReconstructed

- **Algorithm and SPD ineff.**
 - primReconstructed
 - primReconstructable

- **SPD acceptance**
 - primReconstructable
 - primDetectable

- **Disappeared particles**
 - primDetectable

- **Vertex and trigger ineff.**

Formulas

- **Background**
 \[
 BkgCorrW(\eta, z_v) = \frac{\sum_{iEv} \# \text{prim Reconstructed}(\eta_{MC}, z_{MC})}{\sum_{iEv} \# \text{tracklets}(\eta_{rec}, z_{rec})}
 \]

- **Efficiency**
 \[
 EffCorrW(\eta, z_v) = \frac{\sum_{iEv} \# \text{prim Reconstructable}(\eta_{MC}, z_{MC})}{\sum_{iEv} \# \text{prim Reconstructed}(\eta_{MC}, z_{MC})}
 \]

- **Acceptance**
 \[
 AccCorr(\eta, z_v) = \frac{\sum_{iEv} \# \text{prim Reconstructable}(\eta_{MC}, z_{MC})}{\sum_{iEv} \# \text{prim Detectable}(\eta_{MC}, z_{MC})}
 \]

- **Disappearance correction**
 \[
 DisPartCorrW(\eta, z_v) = \frac{\sum_{iEv} \# \text{prim}(\eta_{MC}, z_{MC})}{\sum_{iEv} \# \text{prim Detectable}(\eta_{MC}, z_{MC})}
 \]

- **Trigger vertex correction**
 \[
 TriggVtxCorrW(\eta, z_v) = \frac{\sum_{allEvts} \# \text{prim}(\eta_{MC}, z_{MC})}{\sum_{trigg \& \text{recVtxEvts}} \# \text{prim}(\eta_{MC}, z_{MC})}
 \]
Event level

- **Vertex inefficiency**

\[\text{CorrW}(\text{multSPD}, z_v) = \frac{\sum_{\text{triggEvts}} \#\text{events}(\text{multSPD}, z_{MC})}{\sum_{\text{trigg & vtxEvts}} \#\text{events}(\text{multSPD}, z_{MC})} \]

- **MB trigger inefficiency**

\[\text{CorrW}(\text{multSPD}, z_v) = \frac{\sum_{\text{allEvts}} \#\text{events}(\text{multSPD}, z_{MC})}{\sum_{\text{triggEvts}} \#\text{events}(\text{multSPD}, z_{MC})} \]

All events generated for a certain event class
Background correction

\[
BkgCorrW(\eta, z_v) = \frac{\sum_{iEv} \# \text{prim Reconstructed}(\eta_{MC}, z_{MC})}{\sum_{iEv} \# \text{tracklets}(\eta_{rec}, z_{rec})}
\]

Overall bkg fraction (SS tracklets+comb): 5%
Efficiency correction

Detector + reconstruction algorithm inefficiency

\[
\text{EffCorr}_W(\eta, z_v) = \frac{\sum_{iEv} \# \text{ prim Reconstructable}(\eta_{MC}, z_{MC})}{\sum_{iEv} \# \text{ prim Reconstructed}(\eta_{MC}, z_{MC})}
\]

Overall algorithm inefficiency: 2%
Detector inefficiency: 13% (15 fully dead modules assumed to test the analysis tools)
\[\text{AccCorr}(\eta, z_v) = \frac{\sum_{iEv} \# \text{ prim Reconstructable}(\eta_{MC}, z_{MC})}{\sum_{iEv} \# \text{ prim Detectable}(\eta_{MC}, z_{MC})} \]
Applying corrections to data

dN_{ch}/dη in triggered events with vertex reconstructed

Adding particle disappeared before reaching the SPD (decays and secondary Interactions)

Applying acceptance correction

Applying efficiency correction

Background subtraction

Data matrices \rightarrow PYTHIA
Corr. matrices \rightarrow PYTHIA
Vertex

Events used in the analysis to fill data matrices: triggered events with vertex in $|z_{\text{recVtx}}| < 10 \text{ cm}$ and at least one tracklet reconstructed.

Trigger

Two different event classes considered: Inelastic (INEL) and Non Single Diffractive (NSD)

Event level corrections

Assumed trigger condition: (pixels or V0 detector) and beam-gas veto.
Applying corrections

Final $dN_{ch}/d\eta$ distribution

Triggered events with vertex

Triggered events

Final distribution

Data matrices \rightarrow PYTHIA
Corr. matrices \rightarrow PYTHIA
Applying corrections

Final \(dN_{\text{ch}} / d\eta \) distribution

Data matrices → PYTHIA
Corr. matrices → PYTHIA
Summary and outlook

- dN_{ch}/d\eta measurement with pixels:
 - available with very first data using pixel detector
 - status of reconstruction and analysis tools:
 - fully developed within the First Physics Task Force
 - tested on MC official productions on the CERN Analysis Facility
 - added to the official “analysis train” for the organized analysis

- Outlook:
 - apply the correction chain to the first data
 - complete first physics papers (and try to be first at LHC...)
 - extend the analysis tools to the first heavy ion data (ongoing)
Applying corrections

Final $dN_{ch}/d\eta$ distribution

<table>
<thead>
<tr>
<th>7 TeV</th>
<th>NSD</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PYTHIA</td>
<td>0.809</td>
<td>0.191</td>
</tr>
<tr>
<td>PhoJet</td>
<td>0.860</td>
<td>0.140</td>
</tr>
</tbody>
</table>

Data matrices \rightarrow PhoJet
Corr. matrices \rightarrow PYTHIA