Ion Acceleration in Superintense Laser Interaction with Ultrathin Targets

Andrea MACCHI

INCONGRESSO DELLA SOCIETÀ ITALIANA DI FISICA, Bologna, 20-24 Settembre 2010

*also at Dipartimento di Fisica “Enrico Fermi”, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
www.df.unipi.it/~macchi
MAIN COWORKERS

Matteo Tamburini, Silvia Veghini, Francesco Pegoraro*
*Dipartimento di Fisica “Enrico Fermi”,
Università di Pisa, Pisa, Italy
*also with CNISM, Italy

Tatiana V. Liseykina
Institute of Computer Technologies,
SD-RAS, Novosibirsk, Russia and
Institute of Physics, University of Rostock, Germany

Satyabrata Kar, Marco Borghesi
School of Mathematics and Physics,
Queen's University of Belfast, Northern Ireland, UK

Antonino Di Piazza, Christoph H. Keitel
MPI-K, Heidelberg, Germany
Protons from Metallic targets observed in 2000 by three experimental groups

- high number (up to 10^{14})
- good collimation
- ultra-low emittance
 (4 x 10^3 mm mrad)
- maximum energy and efficiency observed (*):
 58 MeV, 12% of laser energy @ $I=3 \times 10^{20}$ W/cm2
TARGET NORMAL SHEATH ACCELERATION

TNSA physical mechanism: acceleration in space-charge electric fields generated at the rear surface by escaping high-energy ("fast") electrons

Connection with the "classic" problems of sheath dynamics and plasma expansion into vacuum

Protons originate from impurities: TNSA of heavier ions can be achieved by target engineering
APPLICATIONS AND CHALLENGES

Foreseen applications:
- Ignitor or diagnostic beam in Inertial Confinement Fusion
- Oncological hadrontherapy & isotope production in Medicine
- Probing of laser-plasma interactions

Challenging tasks:
- Reaching >150MeV/A: scaling at higher intensities?
- Improve and control proton/ion beam properties (monoenergeticity, collimation, repetition rate, ...)
- Reaching relativistic ion regimes (>1 GeV/A); what happens at ultrahigh intensities? (ELI project: intensities up to 10^{26} W/cm²)
RUNNING PROJECTS ON ION ACCELERATION

FIRB “Futuro in Ricerca” project SULDIS ("SUperintense Laser-Driven Ion Sources") 2010/14
National coordinator: Matteo Passoni (Politecnico Milano)
Local coordinator: AM

Italian SuperComputing Resource Allocation (ISCRRA) project TOFUSEX at CINECA (Bologna)
(“TOwards Full-scale Simulations of laser-plasma EXperiments) Principal Investigator: AM
Collaborators: G.Turchetti, P.Londrillo, A.Sgattoni (Bologna)
ULTRATHIN TARGETS (1-100 nm)

Advantages:
- Concentration of laser pulse energy in small volume: higher electron temperature \rightarrow higher ion energy?
- Significant (or even dominant) effect of direct Radiation Pressure Acceleration (RPA)

Possible to use thanks to:
- advanced target manufacturing (e.g. Diamond-Like Carbon foils)
- pulse cleaning techniques (e.g. plasma mirrors) to generate prepulse-free ultrashort pulses avoiding early target disruption
Target: thin (0.1-1 µm) **Cu** foil with **C** and **H** impurities

Laser pulse: 1ps, up to 3×10^{20} W/cm2

various polarizations

Modulated, “complementary” spectra for **C** and **H** (**H dip** at **C peak**)

Collimated plasma jet observed via interferometry

Data from VULCAN-TAP@RAL, UK (S.Kar)
Target: 0.1 μm Cu foil with 10nm CH layers
electron density 10^{23} cm3
Laser pulse: 0.5ps, 1.4×10^{20} W/cm2
linear polarization

The scaled down model problem
qualitatively reproduces the experiment

Andrea MACCHI, XCVI Congresso SIF, Bologna, 21/09/2010
Target: 0.1µm **Cu** foil with 10nm **CH** layers
electron density 10^{23} cm$^{-3}$
Laser pulse: 0.5ps, 1.4×10^{20} W/cm2
linear polarization

The scaled down model problem qualitatively reproduces the experiment

$t = 50$ cycles
Target: 0.1µm Cu foil with 10nm CH layers
electron density 10^{23} cm$^{-3}$
Laser pulse: 0.5ps, 1.4×10^{20} W/cm2
linear polarization

The scaled down model problem qualitatively reproduces the experiment

$t=75$ cycles
Target: 0.1 μm Cu foil with 10nm CH layers
electron density 10^{23} cm$^{-3}$
Laser pulse: 0.5ps, 1.4×10^{20} W/cm2
linear polarization

The scaled down model problem qualitatively reproduces the experiment

t=100 cycles
2D SIMULATIONS FOR THE EXPERIMENT

Target: 0.1\,\mu m Cu foil with 10nm CH layers
electron density 10^{23} cm$^{-3}$
Laser pulse: 0.5ps, 1.4×10^{20} W/cm2
linear polarization

The scaled down model problem
qualitatively reproduces the experiment

$t=125$ cycles

Andrea MACCHI, XCVI Congresso SIF, Bologna, 21/09/2010
Extension of the classic model of plasma expansion in vacuum to a multispecies plasma predicts the formation of shock fronts due to spatial separation between light and heavy species and formation of spectral peaks and dips.

[see e.g. Kemp & Ruhl, PoP 12 (2005) 033105; Tikhonchuk et al, PPCF 47 (2005) B869]

Possible additional effects in this experiment characterized by unprecedented intensity and ultrathin substrate target:
- nearly full relativistic electron population
- instabilities (two-stream, Buneman) in the blow-off plasma
- significant boost by radiation pressure acceleration (RPA)

[see e.g. Kar et al, PRL 100 (2008) 225004]
INTERSTELLAR VEHICLE PROPELLED BY TERRESTRIAL LASER BEAM

By Prof. G. Marx
Institute of Theoretical Physics, Roland Eötvös University, Budapest

Unlimited Ion Acceleration by Radiation Pressure

S. V. Bulanov, 1,* E. Yu. Echkina, 2 T. Zh. Esirkepov, 1 I. N. Inovenkov, 2 M. Kando, 1 F. Pegoraro, 3 and G. Korn 4
1Kansai Photon Science Institute, JAEA, Kizugawa, Kyoto 619-0215, Japan
2CMC, Moscow State University, Moscow 119899, Russia
3Physics Department, University of Pisa and CNISM, Pisa 56127, Italy
4Max Plank Institute of Quantum Optics, Garching 85748, Germany
(Received 18 November 2009; published 2 April 2010)
Using the “Light Sail” model, i.e. a perfect mirror boosted by Radiation Pressure, it is shown that acceleration efficiency is 100% as $V \rightarrow c$.

Andrea MACCHI, XCVI Congresso SIF, Bologna, 21/09/2010
Simulations at $I \geq 10^{23} \text{W/cm}^2$ suggest thin foil acceleration up to GeV/A energies.
Using CP and normal incidence fast electron generation is strongly suppressed, making radiation pressure dominant even at intensities lower than...
Peak ion energy (a) efficiency (b) & energy spectra (c) vs. laser pulse intensity and thickness:
very good agreement of analytical model with results of PIC simulations accounting for kinetic effects

Macchi et al,
PRL 103 (2009) 085003;
Stronger electron heating and lower “penetration” threshold with respect to 1D: ion spectrum broadens and monoenergetic peak tends to disappear as seen in experiment.

3D simulations
left: Supergaussian spot profile
right: Gaussian

Note that only in 3D angular momentum conservation is taken into account

Simulation set-up:
- 320 X 1050 X 1050 grid, 80 points per wavelength
- 27 particles per cell, \(\sim 1.5 \times 10^9\) in total
- 182 PEs, \(\sim 360\) Gbytes load

Lyseykina, Borghesi, Macchi, Tuveri, PPCF 50 (2008) 124033
Motivation: Radiation Reaction (RR) aka Radiation Friction is important for ultra-relativistic particles in EM fields and is thus expected to play a strong role in next generation experiments at ultra-high intensities.

The typical intensity for relevant RR effects is estimated to be $\sim 10^{23}$ W/cm2. This corresponds, to the foreseen regime of RPA dominance (for Linear Polarization)

Our approach: inclusion of Landau-Lifshitz RR force in PIC simulations (plus suitable approximations)
RADIATION REACTION MODELING

\[\frac{dp}{dt} = -e \left(E + \frac{v}{c} \times B \right) \]
\[-e \tau_0 \left[\gamma \left(\frac{dE}{dt} + \frac{v}{c} \times \frac{dB}{dt} \right) \right. \]
\[-\frac{e}{mc} \left(\left(E + \frac{v}{c} \times B \right) \times B \right) + \left(\frac{v}{c} \cdot E \right) E \]
\[-\gamma^2 \frac{e}{mc} \left(\left(E + \frac{v}{c} \times B \right)^2 - \left(\frac{v}{c} \cdot E \right)^2 \right) v \]
\[\tau_0 = \frac{2e^2}{3mc^3} \]

EoM with Landau-Lifshitz force in non-covariant notation

(Landau & Lifshitz, *The Classical Theory of Fields*, par. 76)

Numerical implementation benchmarked with the exact solution in a plane wave

RP-dominated regime: $2.3 \times 10^{23} \text{ W/cm}^2$, 11 cycles pulse

1 um foil, 100n_c, circular polarization

Negligible RR effects on ion spectrum!

Higher energy than in LP case
RR EFFECTS ON ION SPECTRA – II (CP)

RP-dominated regime: \(2.3 \times 10^{23} \text{ W/cm}^2\), 11 cycles pulse

1 um foil, 100\(n_c\), circular polarization

Negligible RR effects on ion spectrum!

Higher energy than in LP case
RP-dominated regime: $2.3 \times 10^{23} \text{ W/cm}^2$, 11 cycles pulse

0.3 um foil, 100n_c, circular polarization

The pulse penetrates through the foil due to “relativistic” Self-Induced Transparency

RR effects are now important for CP and increase the ion energy, but the regime is not optimal for ion acceleration
CONCLUSIONS

- Impressive amount of experimental research on laser ion acceleration in the last 10 years
- Theory and simulation are able to support and promote experimental activities and developments
- Combining progress in laser systems (higher intensities, (cleaner) pulses with target engineering (ultrathin foils, structured/multispecies targets ...) offers new perspectives
- Increase of Supercomputing power allows more realistic, closer to experimental simulations

Lots of work remain to be done anyway...

Andrea MACCHI, XCVI Congresso SIF, Bologna, 21/09/2010