ASY-EOS experiment at GSI: constraining the symmetry energy with neutron and proton elliptic flows

and the ASY-EOS collaboration

*LNS-INFN and CSFNSM Catania, Italy
Symmetry Energy $E_{sym}(
ho_B)$

\[
\frac{E(\rho_B, I)}{A} = E(\rho_B) + E_{sym}(\rho_B) I^2 + O(I^4) + \ldots
\]

\[
I = \frac{N - Z}{N + Z}
\]

Suprasaturation densities
supernovae, nucleosynthesis
(rel. HIC, neutron stars)

From H. Wolter talk at
ASYEOS 2010,
Noto, May 2010
High density symmetry energy in relativistic heavy ion collisions

\rightarrow Au+Au 1AGeV central: phase space evolution in a CM cell

\rightarrow High densities about $2.5 \rho_0$

\rightarrow Non-spherical momentum distribution, non-equilibrium even at highest densities

Observable (qualitative):

Pre-equilibrium emission of p, n, light clusters

Differential and difference of collective flows

Particle production, π, K
Constraints on the symmetry energy

Current state at low densities (Fermi energy): various extrapolations, generally consistent with each other, but still uncertainties. More work necessary, also on consistency of codes (see E. De Filippo talk).

Current state at high densities (E/A>100 MeV): Few experimental data on isospin effects, Few extrapolations, inconsistent with each other, Big uncertainties More work necessary on consistency of codes Main example: π^-/π^+ ratio

Ferini, at al., NPA 762 (05) Z. Xiao et al., PRL 102 (09)

Z.Q. Feng, PLB 683 (2010) 459
Pion ratio \rightarrow High densities:
Some increase, some decrease
with increasing stiffness.
Inconsistent with each other!
Understand better mechanism!

Current state at high densities (E/A > 100 MeV):
Few experimental data on isospin effects,
Few extrapolations, inconsistent with each other,
Big uncertainties
More work necessary on consistency of codes
Main example: π^-/π^+ ratio

Constraints on the symmetry energy

Ferini, et al., NPA 762 (05)
Z. Xiao et al., PRL 102 (09)
Z.Q. Feng, PLB 683 (2010)

models for symmetry energy (SE)
Transverse and elliptic flow

\[\frac{dN}{d\phi}(y, p_t) = 1 + V_1 \cos(\phi) + 2V_2 \cos(2\phi) \]

\[V_1(y, p_t) = \left(\frac{p_x}{p_t} \right) \]

Transverse flow: it provides information on the angular distribution in the reaction plane

\[V_2(y, p_t) = \left(\frac{p_x^2 - p_y^2}{p_t^2} \right) \]

Elliptic flow: it measures the competition between in-plane \((V_2 > 0)\) and out-of-plane ejection \((V_2 < 0)\)
URQMD simulations (by Qingfeng Li)

In order to mimic the strong density dependence of the symmetry potential at high densities, we adopt the form of $F(u)$, used in [4], as

$$F(u) = \begin{cases}
F_1 = u^\gamma, & \gamma > 0, \\
F_2 = u \cdot \frac{a-u}{a-1}, & a > 1.
\end{cases}$$

Here, γ is the strength of the density dependence of the symmetry potential. We choose $\gamma = 0.5$ and 1.5, denoted as the symmetry potentials F05 and F15, respectively. a (in F_2)

UrQMD vs. FOPI data: Au+Au @ 400 A MeV

Coalescence condition:
$\text{DR} < 3 \text{ fm}$ and $\text{DP} < 275 \text{ MeV/c}$

(*) W. Reisdorf et al., NPA 612 493-556 (1997)
UrQMD vs. FOPI data:
Au+Au @ 400 A MeV
5.5<b<7.5 fm

squeeze-out more sensitive than the directed flow

inversion of neutron and hydrogen flows

400 AMeV maximum V2
Present constraints on the high density symmetry energy

Au+Au, 400AMeV, FOPI-LAND data (1991)*

π⁺/π⁻ ratio, Feng, et al. (ImQMD)

ρ/ρ₀ S(ρ) (MeV)

Fermi Energy HIC, MSU

result from neut/hydro ratios:
- <γ> = 0.94 ± 0.21
- just below linear

esym = ekin + 22.0*u^{0.95}

HIC isospin diffusion and n/p ratios PRL 102 (2009)
IAS isobaric analog states, Danielewicz and Lee, NPA 818 (2009)
PDR pygmy dipole resonance, Klimkiewicz et al., PRC 76 (2007)

* Y. Leifels PRL 71 (1993) 963
ASY-EOS experiment approved by GSI-PAC
(possible) 1st phase toward FAIR ???
(e.g. 132Sn, 106Sn beams)

Au+Au @ 400 AMeV
96Zr+96Zr @ 400 AMeV
96Ru+96Ru @ 400 AMeV

FairRoot simulation
(Geant 3-4, Fluka, Montecarlo)

Figure 3: Schematic diagram of experimental setup in Cave C.
Symmetry Energy Project ➔ International collaboration to determine the symmetry energy over a range of density

Require: New Detectors (TPC), travel money, theory support
GSI TEST with U BEAM, September 2009

Quasi-Standard analogical acquisition

$Z=1$

$Z=2$

punching-through

$Z=3$

γ

Si

$\mathrm{CsI(Tl)}$

$^{73+} U 10^5 \text{ pps} 350 \text{ A.MeV} + \text{Pb}$
GSI TEST with \textit{U} BEAM, September 2009

Digital Pulse Shape acquisition DSPA

U73+ 10^5 pps 350 A.MeV + Pb
GSI TEST with U BEAM, September 2009

Digital Pulse Shape acquisition DSPA

$^{9}{\text{Be}}$, $^{7}{\text{Be}}$, $^{7}{\text{Li}}$, $^{6}{\text{Li}}$, $^{3}{\text{He}}$, $^{3}{\text{He}}$ punch-through, α, α, t, d, p, H punch-through, Fast p, e, γ

$U^{73+} 10^5$ pps 350 A.MeV + Pb
Conclusions

Several heavy Ion reactions observables have been useful in order to get information on symmetry energy at sub-saturation densities (giant and pigmy dipole resonances, isobaric analogue states and masses, isospin diffusion, n/p ratios, 3H/3He ratio...).

Viceversa, more extended data sets and consistency checks (π^-/π^+) are needed in order to arrive at firm conclusions at supra-saturation densities. Neutron-proton elliptic flow is a promising observable.

In the ASY-EOS experiment at GSI we will try to measure such (and other) crucial observables......

......“a good constraint” of symmetry energy at supra-saturation density?