Neutronic Activation Analysis for ITER Fusion Reactor

Barbara Caiffi

100° Congresso Nazionale SIF
Outlook

- Nuclear Fusion
- International Thermonuclear Experimental Reactor (ITER)
- Neutronics Computational Tools
- Activation Analysis for ITER Reactor
Nuclear Fusion

D + T → ⁴He (3.5 MeV) + n (14.1 MeV)

Q=17.6 MeV

How much energy from...

1 g (²H,³H) → 7*10⁸ KJ
1 g ²³⁵U → 8*10⁷ KJ
1 g petrol → 40 KJ
1 g coal → 0.04 KJ
Fuel Availability on the Earth

DEUTERIUM: natural abundance 0.0154 % of H → reserve in the oceans 2×10^{16} Kg

TRITIUM: β radioactive with 12 years half life, not available in large quantities

What is available?

LITHIUM: from 1 kg of Lithium can be produced 0.43 kg of tritium

Lithium reserve in Earth crust $[1] \rightarrow 1.3 \times 10^9$ Kg, TRITIUM: 5.6×10^8 Kg

Lithium reserve in the ocean $[1] \rightarrow 2.3 \times 10^{14}$ Kg TRITIUM: 10^{14} Kg

1 kg of D-T fuel produces 7×10^8 MJ ≈ 200 GWh

Year World Energy Consumption: 145 Gwh$[2]$

Fusion could fulfil energy supply for 1.5 billion years

How to Achieve Fusion

Inertial Confinement

- Iced DT pellet as a fuel
- Heating trough laser compression
- Works in pulse mode only

Magnetic Confinement

- At temperature required for fusion to occur, plasma is completely ionized
- Charge particles can be confined using magnetic field
- Application of this concept are the Tokamak (like ITER)
The plasma is a secondary winding of a transformer. The resultant toroidal plasma current provides for Ohmic heating and generates the poloidal magnetic field B_θ. Poloidal coils generated an additional toroidal magnetic field B_ϕ for greater stability.
Economy of a Tokamak

Ignition: fusion charge products compensate for energy loss (α in the case of DT plasma).

Break-even: Fusion energy released must exceed the energy supplied.

$$\frac{E_{FU}}{\eta_{IN} E_{IN}} = Q_p = 1$$
Where we are now?

ITER parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maior radius</td>
<td>6.2 m</td>
</tr>
<tr>
<td>Minor radius</td>
<td>2 m</td>
</tr>
<tr>
<td>Volume</td>
<td>830 m³</td>
</tr>
<tr>
<td>Plasma current</td>
<td>15 MA</td>
</tr>
<tr>
<td>Toroidal field</td>
<td>5.3 T</td>
</tr>
<tr>
<td>Density</td>
<td>10^{20} m⁻³</td>
</tr>
<tr>
<td>Peak Temperature</td>
<td>2×10^8 K</td>
</tr>
<tr>
<td>Fusion Power</td>
<td>500 MW</td>
</tr>
<tr>
<td>Plasma Burn</td>
<td>300-500 s</td>
</tr>
</tbody>
</table>
ITER Project

ITER SITE: Cadarache (France)

TER TIMELINE:
2008: Site levelling
2010: Start Tokamak complex excavation
2013: Start Tokamak complex construction
2014: Arrival of first manufactured components
2015: Begin tokamak assembly
2019: Complete tokamak assembly
2020: First Plasma
2027: First D-T Operation

MAIN GOAL: Q>10
500 MW of fusion power from 50 MW input power
ITER Machine

- Height: 30 m
- Diameter: 28 m
ITER Machine

VACUUM VESSEL

30 m

28 m
ITER Machine

VACUUM VESSEL

BLANKET

30 m

28 m
ITER Machine

VACUUM VESSEL

BLANKET 30 m

DIVERTOR

28 m

POLOIDAL FIELD COILS

TOROIDAL FIELD COILS
ITER Machine

- VACUUM VESSEL
- BLANKET
- DIVERTOR
- POLOIDAL FIELD COILS
- TOROIDAL FIELD COILS
- CENTRAL SOLENOID
ITER Machine

VACUUM VESSEL

44 openings (“ports”):
- 18 upper ports
- 17 equatorials ports
- 9 lower ports
Neutronics in Fusion Technology

DT Fusion Reaction

\[Q_{\text{DT}} = 17.6 \text{ MeV} \]
\[P_{\text{FUSION}} = 500 \text{ MW} \]
\[\Phi_n = 10^{14} \text{ n/cm}^2\text{s} \]
on the First Wall

- **Neutrons:**
 - Induce radioactivity in the structural materials as well as in the coolant.
 - Damage materials through atom displacement, affecting mechanical and electric properties.
 - Produce hydrogen and helium, which make welding difficult if > 1 appm.
 - Heat superconducting coils reducing their effectiveness.

These effects must be studied!
The safety on a fusion plant requires a deep knowledge of the radiation map due to:
- “prompt” neutron and γ
- γ produced by activated material, in particular after the shutdown, when maintenance is planned.

Three step procedure:

- Monte Carlo calculation of the spectral neutron flux in the materials
- Deterministic calculation of the radioactivity induced by neutrons as a function of irradiation or decay time
- Monte Carlo γ transport and calculation of the dose rate in the region of interest
Rigorous 2 Steps (R2S) Method

1) Monte Carlo neutron transport
2) Deterministic activation calculation
3) Monte Carlo γ transport

INPUT

- MCNP Input File
 (3D geometry, materials, cross section libraries, neutron source)

CODE

MCNP5 - N

OUTPUT

Neutron flux and spectra map
Rigorous 2 Steps (R2S) Method

1) Monte Carlo neutron transport
2) Deterministic activation calculation
3) Monte Carlo γ transport

INPUT
- MCNP Input File
 (3D geometry, materials, cross section libraries, neutron source)

CODE
- MCNP5 - N

OUTPUT
- Neutron flux and spectra map

Neutron flux n/cm^2s

Neutron spectrum

![Diagram showing neutron flux and spectrum](image-url)
Rigorous 2 Steps (R2S) Method

1) Monte Carlo neutron transport
2) Deterministic activation calculation
3) Monte Carlo γ transport

INPUT

- MCNP Input File
 (3D geometry, materials, cross section libraries, neutron source)

CODE

MCNP5 - N

OUTPUT

Neutron flux and spectra map
Rigorous 2 Steps (R2S) Method

1) Monte Carlo neutron transport
2) Deterministic activation calculation
3) Monte Carlo γ transport

INPUT
- MCNP Input File
 (3D geometry, materials, cross section libraries, neutron source)
- Material
- Irradiation Scenario
- Decay Time

CODE
- MCNP5 - N
- FISPACT

OUTPUT
- Neutron flux and spectra map
- Activity map
- γ source
Rigorous 2 Steps (R2S) Method

1) Monte Carlo neutron transport
2) Deterministic activation calculation
3) Monte Carlo γ transport

INPUT
- MCNP Input File
 - (3D geometry, materials, cross section libraries, neutron source)
- Material
- Irradiation Scenario
- Decay Time
- MCNP Input File
 - (3D geometry, materials, cross section libraries, γ source)
 - γ-to-dose factors

CODE
- MCNP5 - N
- FISPACT
- MCNP5 - P

OUTPUT
- Neutron flux and spectra map
- Activity map
- γ source
- Shutdown dose rate map
Direct 1 Step (D1S) Method

- Substitute Capture with activation-induced radiative decay.
- Neutron and decay γ transport treated in a single run.
- Special, ad hoc generated, “capture” cross section data.

Cons:
- Ad hoc libraries should be produced for the activation dose relevant nuclides, so an a priori decision has to be made.
- Each set of libraries is suitable just for 1 cooling interval.
Shutdown Dose Rate Benchmarks

Shutdown Dose Rate Benchmark at FNG[3]

Mock-up of ITER First Wall (Water & Steel IG)

Shutdown Dose Rate Benchmark at JET[4]

In JET benchmark agreement is worse because of the lack of information about the technical drawing (geometry, impurity content)

Agreement between a factor 2 -3

Good experimental vs calculated data agreement

[4] PETRIZZI, L., et al, "Benchmarking of Monte Carlo based shutdown dose rate calculations for applications to JET", ICRS-10, Madeira, 2004
ITER project goals:

- 100 μSv/h \(10^6\) s after the shutdown in the Port Interspace Region \([\phi \approx 10^7\text{n/(cm}^2\text{s})]\) where maintenance is planned.
European Test Blanket Module (TBM) Port

Modules for tritium production tests, containing:
- Breeder (lithium)
- Neutron multiplier to improve efficiency

\[\text{n+}^6\text{Li} \rightarrow \text{t} + \alpha + 4.8 \text{ MeV} \]
\[\text{n+}^7\text{Li} \rightarrow \text{n} + \text{t} + \alpha -2.8 \text{ MeV} \]

Helium Cooled Pebble Bed (HCPB):
- **Breeder:** lithiated ceramic pebbles (Li$_4$SiO$_4$ or Li$_2$TiO$_3$)
- **Neutron Multiplier:** beryllium pebbles

Helium Cooled Lithium Lead (HCLL):
- **Breeder & Neutron Multiplier:** PbLi eutectic (liquid at operating temperatures)
B-Lite:
- Official Model for ITER neutronic analysis
- Represents 40° sector of the reactor
- Contains only main components
- TBM Port represented as an homogenized water-steel block
- Contains 21216 cells, 27920 surfaces, 26 materials
- Run 57 histories per second per core (10⁹ histories take 24h using 250 cores)
ITER Model

VERTICAL CUT

HORIZONTAL CUT

x[cm] y[cm] z[cm]

PORT PLUG PORT INTERSPACE PORT PLUG PORT INTERSPACE
Calculation performed on rectangular mesh imposed over the geometry (voxel dimensions 10*10*10 cm³)
Jobs run on 600 cores with MPI capability (ENEA cluster CRESCO), time 24 h

- required variance reduction techniques (Weight Windows)
Shutdown Dose Rate in the Maintenance Area Model

- Shutdown Dose Rate exceeds the limit imposed by the ITER project (100 μSv/h 12 days after the shutdown) close to cryostat and Pipe Forest structure.
- Gaps and other experimental ports are the main responsible of the dose.
- Optimization of the gaps and of the experimental port cross talk is currently under investigation.

Impurity content of Steel 316 IG:
- Co60 0.05% wgt – 70% dose
- Ta182 0.01% wgt -22% dose

ACTIVATION GAMMA SOURCE [γ/cm3s]
Shutdown Dose Rate in the Maintenance Area Model

- Shutdown Dose Rate exceeds the limit imposed by the ITER project (100 μSv/h 12 days after the shutdown) close to cryostat and Pipe Forest structure.
- Gaps and other experimental ports are the main responsible of the dose.
- Optimization of the gaps and of the experimental port cross talk is currently under investigation.

Impurity content of Steel 316 IG:
- Co60 0.05% wgt – 70% dose
- Ta182 0.01% wgt -22% dose

ACTIVATION GAMMA SOURCE [γ/cm³s]
Shutdown Dose Rate exceeds the limit imposed by the ITER project (100 μSv/h 12 days after the shutdown) close to cryostat and Pipe Forest structure.

Gaps and other experimental ports are the main responsible of the dose

Optimization of the gaps and of the experimental port cross talk is currently under investigation

Impurity content of Steel 316 IG:
- Co60 0.05% wgt – 70% dose
- Ta182 0.01% wgt -22% dose
Shutdown Dose Rate exceeds the limit imposed by the ITER project (100 μSv/h 12 days after the shutdown) close to cryostat and Pipe Forest structure.

- Gaps and other experimental ports are the main responsible of the dose
- Optimization of the gaps and of the experimental port cross talk is currently under investigation
Conclusions

- The worldwide efforts in fusion technology aim at developing, in the long-term, power reactors which can contribute substantially to the supply of electricity.

- The construction and operation of the experimental fusion device ITER (“International Thermonuclear Experimental Reactor”) is an essential next step towards this long-term goal.

- The availability of qualified computational tools and nuclear data for the neutron transport simulation and the calculation of activation and material damage is a pre-requisite to enable reliable design calculations for these facilities.

- An automated R2S shutdown dose rate calculation tool was made and used to evaluate the actual design European TBM Port.

- From preliminary results, the shutdown dose rate in the region of maintenance is higher than 100 μSv/h. The main contribution is due to the cross-talk with the other experimental ports, which must be better described in the MCNP model and further investigated.
Thank You!