
Theory of neutrino masses and mixings

G. Senjanović
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Summary. —
The tiny neutrino masses and the associated large lepton mixings provide an inter-
esting puzzle and a likely window to the physics beyond the standard model. This
is certainly true if neutrinos are Majorana particles, since unlike in the Dirac case,
the standard model is not a complete theory. The Majorana case leads to lepton
number violation manifested through a neutrino-less double beta decay and same
sign dileptons possibly produced at colliders such as LHC. I discuss in these lectures
possible theories of neutrino mass whose predictions are dictated by their structure
only and this points strongly to grand unification. I cover in detail both SU(5) and
SO(10) grand unified theories, and study the predictions of their minimal versions.
I argue that the theory allows for a (moderate) optimism of probing the origin of
neutrino mass in near future.

1. – Foreword

The theory of neutrino masses and mixings is a rich subject, with a continuos flow of
papers as you are reading these lecture notes. There is no way I could do justice to this
vast field in such a short time and space an so I chose to concentrate on what my taste
dictated. In order to be as complete and as pedagogical as possible on the issues chosen
to be discussed, I have completely omitted a popular field of horizontal symmetries which
are used in order to make statements on neutrino masses and mixings, and I apologize to
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the workers in the field. My decision is prompted by my lack of belief in this approach
which to me amounts often to a change of language.

Instead of accepting the values of these parameters one typically choses some tex-
tures of fermion mass matrices (this is done by the use of symmetries, often discrete
ones) which then lead to definite values of masses and/or mixings. The problem that
I have with this approach is that to this is like saying that proton is stable because of
baryon number symmetry or that photon is massless because of gauge invariance. The
symmetries we assume need not to be exact, and the departures from these symmetries
will give departures from the values that follow consequently. It does not make sense to
me to say that proton and neutron should have the same mass because of SU(2) isospin
invariance, and here I am sure the reader will agree with me. The small mass difference
between the proton and the neutron only says that the isospin symmetry is quite good,
albeit approximate symmetry.

In searching for the origin of neutrino mass, I have opted here to theories whose inner
structure leads to neutrino mass and whose predictions depend only on the same inner
structure. Two such examples, the very ones that lead originally to the understanding
of the smallness of neutrino mass through the so-called seesaw mechanism, are provided
by left-right symmetric theories and the SO(10) grand unified theory. They provide the
core of my lectures, and I have included one of the Appendices (D) to the group theory
of SO(2N) to in order to facilitate a reader’s job. Grand unified theories are particularly
interesting since they typically fix their own scale. For this reason, I make an exception
and discuss in detail also an SU(5) grand unified theory, although in its minimal form
it was tailor fit for massless neutrinos, just as the minimal standard model. However, a
minimal extension needed to account for neutrino masses and mixings leads to exciting
predictions of new particles and interactions likely to be tested at LHC. Furthermore, an
understanding of SO(10) becomes much easier after one masters a simple, minimal SU(5)
theory, which will always remain as a laboratory of the theory of grand unification and
thus a large portion of these notes is devoted to it, including a short Appendix C. The
readers familiar with SU(5) can go directly to the last subsection relevant for neutrino
mass.

Since my lectures are far from being complete, I suggest here to complement them
with these two pedagogical exposes on the subject of neutrino masses and mixings. At
the end of the lectures, I include some references for further reading.

1) Mohapatra, Pal [1]. An excellent book, with a detailed analysis of Majorana
neutrinos, left-right symmetry, seesaw mechanism and SO(10) grand unification, which
provides the core of my lectures.

2) Strumia, Vissani review [2]. Highly recommended especially for the phenomenology
of neutrino masses and mixings. Extremely well written, continuously updated, concise,
clear and surprisingly complete study of neutrino oscillations and related topics.
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2. – Introduction

Today we know for fact that at least two neutrinos are massive and by analogy with
quarks we need the leptonic mixing matrix (see the lectures by Strumia in this school).

We start by reviewing what the Standard Model (SM) says about neutrino masses
and mixings.

2.1. Standard Model review . – The minimal Standard Model (MSM) is an SU(3) ×
SU(2)× U(1) gauge theory with the following fermionic assignment [9]

qL ≡
(
u

d

)
; (uc)L, (dc)L

(1) `L ≡
(
ν

e

)
; (ec)L

where we have omitted the color index for quarks and we work here with left-handed
anti fermions instead of right-handed fermions (see Appendix A, formula (A11))

(2) (ψC)L ≡ Cψ̄TR

Actually, we will sometimes work with right-handed fermions too (as in the section 4
on L-R symmetry), and it is important to be familiar and at ease with both notations.

The maximal parity violation in the usual charged weak interactions is characterized
by the maximal asymmetry between left and right: only left-handed fermions interact
with W± gauge bosons. On top of that, the quark-lepton symmetry is broken by the
minimality assumption: NO right-handed neutrinos. Hence a clear prediction: neutrinos
are massless. In order to see that, recall that fermionic masses in the MSM stem from
the Yukawa interactions with a Higgs doublet Φ

(3) LY = yu q
T
l Ciσ2ΦucL + yd q

T
LCΦ∗dcL + yl l

T
LCΦ∗ecL + h.c.

where the generation index is suppressed for simplicity. An equivalent expression
involves right-handed particles instead of left-handed anti-particles

(4) LY = yu q̄liσ2Φ∗uR + yd q̄LΦdR + yl l̄LΦeR + h.c.

From the charge formula

(5) Q = T3 + Y/2
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The usual charges are reproduced with

(6) Yq =
1
3
, Y` = −1, YuR

=
4
3
, YdR

= −2
3
, YeR

= −2, YΦ = 1

Notice the physical interpretation for the hypercharge of the left-handed particles

(7) YL = B − L

whereas YR has no physical interpretation and needs to be memorized.
The B − L symmetry of the MSM is selected out: it is an anomaly free combination

of accidental global symmetries B and L. In other words, B−L can be gauged. We will
come back often to this important and suggestive fact.

The minimality of (1), the broken symmetry between quarks and leptons is thus
responsible for the only failure of this, otherwise extremely successful, theory.

As it is, the MSM must be augmented in order to account for neutrino mass. If you
insist, though, on the MSM degrees of freedom in (1), the Yukawa interactions that could
lead to neutrino mass must clearly be higher dimensional

(8) LY (d = 5) = yν
(`TLCiσ2Φ)(φT iσ2`L)

M

where the new scale M signifies some new physics.

Exercise: Show that there are only three possible d = 5, SU(2) × U(1) invariant
operators of type (8). Show then that they are all equivalent.

When the Higgs doublet gets a nonvanishing vacuum expectation value (vev)

(9) 〈Φ〉 =
(

0
v

)

the charged fermions get the usual Dirac mass

(10) mf f̄ f ≡ mf (f̄L fR + f̄R fL)

with mf = yfv. In the same manner, from (8) neutrino gets a Majorana mass

(11) mν ν
T
LCνL

with
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Fig. 1. – Neutrinoless double β decay through a Majorana mass mM which breaks a neutrino
fermionic line

(12) mν = yν
v2

M

If M � θ, neutrinos are automatically lighter than the charged fermions; however if
M ' v (or even M � v), small mν may result from yν � 1. Since this is an effective
theory, we can say nothing about mν .

In short, the absence of new light degrees of freedom, indicates Majorana neutrino
masses and the violation of the lepton number at the new scale M .

From (8) and (11), one has ∆L = 2 which allows for the neutrinoless double beta
decay ββ0

(13) n+ n→ p+ p+ e+ ē

It is often argued that ββ0 probes mM , however, the situation is more complex.
Namely, the MSM with neutrino Majorana mass is not a complete theory –it must be
completed through a d=5 operator (8) and a new physics at M . We will see that the
predictions for ββ0 depend on the completion, to which we now turn to.

The effective operator (8) is useful in discussing the qualitative nature of neutrino
mass, but if we wish to probe the origin of neutrino masses we need a renormalizable
theory beyond the MSM. There are three different possibilities of completing the MSM
which all lead to the d=5 operator upon integrating out the new physics; these are three
different seesaw mechanisms.

3. – The see-saw mechanism

We discuss here different realizations of the see-saw mechanism, in order of their
popularity which coincides with the historic development. The idea is a renormalizable
completion of the MSM that will lead to small neutrino mass. The end result must be
a d=5 operator discussed above, since that is dictated by the MSM gauge symmetry, as
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long as new physics is at a scale above MW . Fortunately, there are only three different
possibilities and therefore we can and will discuss all of them in what follows.

3.1. Right-handed neutrinos: Type I see-saw . – The most suggestive completion of the
MSM is the introduction of νR (per family of fermions), a gauge singlet chiral fermion.
This leads to new renormalizable Yukawa couplings (written here for one generation case
only)

(14) ∆L = yD ¯̀
Lσ2Φ∗νR +

MR

2
νTRCνR + h.c.

Introduce

ν ≡ νL + Cν̄TL

N ≡ νR + Cν̄TR(15)

which gives the mass matrix for ν and N (see Appendix B)

(16)
(

0 mD

mT
D MR

)
If MR � mD, neutrinos would be predominantly Dirac particles. For MR ' mD, we

have a messy combination of Majorana and Dirac, whereas for mD �MR we would have
a predominantly Majorana case [this case is rather interesting, since the gauge invariant
scale MR is expected to be above MW : MR > MW ]. In this case the approximate
eigenstates are N with mass MN ≡MR and ν with a tiny mass

(17) Mν = −mT
D

1
MN

mD

This is the original see-saw formula [23] today called Type I. As we know from (8),
with heavy νR, neutrino mass must be of the type (11), confirmed here.

Exercise: Prove explicitly (16) in the case of two generations. Hint: work with mD

diagonal.

Is is clear from (16) that the number of νR’s determines the number of massive light
neutrinos: for each νR, only one νL gets a mass. In other words, we need at least two
νR’s in order to account for both solar and atmospheric neutrino mass differences. it is
suggestive, though, to have a νR per family, in which case an accidental anomaly free
global symmetry of the MSM can be gauged. A neutrino per generation is needed to
cancel U(1)3

B−L anomaly.
The diagrammatic representation of the see-saw in Fig.2 may be even more clear; it

is easy to see that the heavy neutrino propagator gives the see-saw result.



Theory of neutrino masses and mixings 7

Fig. 2. – Diagrammatic representation of the Type I see-saw

3.2. Y = 2, SU(2)L triplet Higgs: Type II see-saw . – Instead of νR, a Y = 2 triplet
∆L ≡ ~∆L · ~σ can play the same role [26]. From the new Yukawas

(18) ∆L(∆) = yij∆`
T
i C∆L`j + h.c.

where i, j = 1, ...N counts the generations, neutrinos get a mass when ∆L gets a vev

(19) Mν = y∆〈∆〉

The vev 〈∆〉 results form the cubic scalar interaction

(20) ∆V = µΦTσ2∆∗LΦ +M2
∆Tr∆

†
L∆L + ...

with

(21) 〈∆〉 ' µv2

M2
∆

where one expects µ of order M∆. If M∆ � v, neutrinos are naturally light. Notice
that (19) and (21) reproduce again the formula (11) as it must be: for large scales of
new physics, neutrino mass must come from d = 5 operator in (8).

Again, the diagrammatic representation may be even more clear, see Figure 3.

3.3. Y = 0, SU(2)L triplet fermion: Type III see-saw . – The Yukawa interaction in
(14) for new singlet fermions carries on straightforwardly to SU(2) triplets too, written
now in the Majorana notation (where for simplicity the generation index is suppressed
and also an index counting the number of triplet - recall that at least two are needed in
order to provide two massive light neutrinos)

(22) ∆L(TF ) = yT `
TCσ2~σ · ~TFΦ +MT

~TTF C ~TF

In exactly the same manner as before in Type I, one gets a Type III see-saw for MT � v
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Fig. 3. – Diagrammatic representation of the Type II see-saw

(23) Mν = −yTT
1
MT

yT v
2

Again, as in the Type I case, one would need at least two such triplets to account
for the solar and atmospheric neutrino oscillations (or a triplet and a singlet). And, as
before, (23) simply reproduces (11) for large MT , and SU(2)×U(1) symmetry dictates.

It can easily be shown that these three types of see-saw exhaust all the possibilities
of reproducing (8) and (11).

Exercise: Show that the three possible different operators of the type (8)correspond
to the three different types of see-saw.

Since (8) and (11) describe effectively neutrino Majorana masses in the MSM, the
question is wether we gain anything by going to be the renormalizable see-saw scenarios.
If the new scales MR,M∆ and MT are huge and not accessible to experiment, then
arguably (16), or (19) and (21) , or (23), are the (8) or (11). In a sense, they are
only a change of language, but not a useful language. We have traded the couplings yν
between physical, observable particles, to the unknown yD (or y∆ or yT ) couplings and
the unknown masses of the heavy particles that we integrate out.

The issue, in any case, is not so much to explain the smallness of neutrino mass, but
to relate it to some other , new, physical phenomenon. After all, small fermion masses
are controlled by small Yukawa couplings.

This is reminiscent of the Fermi theory of weak interactions. At low energies E �
MW , the concept of a massive gauge boson W was not useful and for many years one kept
working on the Fermi theory instead. For otherwise, one would be trading the interactions
between light physical states for the unknown coupling with W and unknown MW .

There are two cases when one is better off talking of W , though
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1. when one can reach the energy E ' MW and thus make W experimentally acces-
sible

2. even when E � MW , but one has a dynamical theory of W interactions as in the
MSM. The SU(2) × U(1) gauge symmetry of MSM made clear predictions at low
energies by correlating charged and neutral current processes.

Ideally, we would like both 1 and 2. By complete analogy, we need then either MR,
M∆ or MT close to MW in order to be accessible at LHC, or we need a theory of
new interactions. The nice example for the latter is Grand Unification: through q − `
symmetry it in principle correlates quark and lepton masses and mixings.

A particularly appealing GUT is SO(10), since it unifies a family of fermions and
has L − R symmetry as a finite gauge transformation in the form of DIrac’s charge
conjugation. I will be discussing it at length later; for the moment suffice it to say that it
predicts both Type I and Type II see-saw, but in minimal predictive versions their scale
is very large, much above MW – and hopeless to detect directly.

In summary, the main message of this chapter should be that the Majorana neutrino
mass is rather suggestive from the theoretical point of view. As such, it provides a
window to new physics at scale M of (8). The crucial prediction of this picture is the
∆L = 2 lepton number violation in processes such as ββ0. However, ββ0 depends in
general on the new physics at scale M , and it is desirable to have a direct probe of lepton
number violation. In 1983, Keung and myself [62]suggested ∆L = 2 production of same
sign dileptons at colliders, accompanied by jets, as a direct probe of the origin of neutrino
mass. We will discuss lepton number violation at length in Section 7

What happens if the neutrino has a pure Dirac mass? In this case, mν = yDv and
the smallness of mν simply requires the smallness of yD. The smallness of mν remains
a puzzle controlled by small yD, as much as the smallness of me is controlled by a small
electron Yukawa coupling. The MSM with Dirac couplings is a complete theory and
needs no theory beyond it. The diversity of fermion masses and mixings encourages
many workers in the field to look for flavor symmetries at high energies, precisely since
the MSM is complete one has no sense of direction and the possibilities are infinite. The
danger here is to be caught in semantics rather in physics, for one often trades the known
masses and mixings of the physical states for the unmeasurable properties of the new
heavy particles and/or textures of mass matrices that often cannot be probed. This is
a generic problem of large scale theories ad in order to verify them we would need to
correlate the neutrino masses and mixings with some new physics. A nice example is
proton decay in GUTs, to which we will come later.

4. – Left-right symmetry and neutrino mass

This Section is devoted to the left-right symmetric extension of the standard model
and the issue of the origin of the breaking of parity. This theory played an impor-
tant historic role in leading automatically to nonzero neutrino masses and the seesaw
mechanism. There are two different possible left-right symmetries: parity and charge



10 G. Senjanović

conjugation. The latter is the finite gauge transformation in SO(10), an is thus rather
suggestive. Still, parity is normally identified with L-R symmetry, so I discuss next parity.
The write-up here is rather simple and pedagogical, without too many technicalities.

4.1. Parity as L-R symmetry . – Parity is the fundamental symmetry between left
and right and its breaking, I believe, should be understood. In the standard model P
is broken explicitly and clearly, in order to break P spontaneously we must enlarge the
gauge group. The minimal model is based on the gauge group [28, 29, 30, 31].

GLR = SU(2)L × SU(2)R × U(1)Y ′

with the quarks and leptons completely symmetric under L↔ R

QL =
(
u

d

)
L

P←→ QR =
(
u

d

)
R

`L =
(
ν

e

)
L

P←→ `R =
(
ν

e

)
R

(24)

Notice that the requirement of left-right symmetry leads to the existence of the right-
handed neutrino and now the neutrino mass becomes a dynamical issue, related to the
pattern of symmetry breaking. In the Standard Model, where νR is absent, mν = 0; here
instead we shall need to explain why neutrinos are so much lighter than the corresponding
charged leptons.

In this theory, the formula for the electromagnetic charge becomes

(25) Qem = I3L + I3R +
B − L

2

This is in sharp contrast with the Standard Model, where the hypercharge Y was
completely devoid of any physical meaning. So L-R symmetry is deeply connected with
B-L symmetry; the existence of right-handed neutrinos implied by L-R symmetry is
necessary in order to cancel anomalies when gauging B-L. Namely, the B-L symmetry is
a global anomaly free symmetry of the SM, but without νR the gauged version would
have (B − L)3 anomaly.

Our primary task is to break L-R symmetry, i.e. to account for the fact that MWR
�

MWL
, WR and WL denoting right-handed and left-handed gauge bosons respectively.

In order to do so we need a set of left-handed and right-handed Higgs scalars whose
quantum numbers we will specify later. Imagine for the moment two scalars ϕL and ϕR
with

(26) ϕL
P←→ ϕR
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Assume no terms linear in the fields (since ϕL and ϕR should carry quantum numbers
under SU(2)L and SU(2)R ) we can write down the left-right symmetric potential

(27) V = −µ
2

2
(ϕ2
L + ϕ2

R) +
λ

4
(ϕ4
L + ϕ4

R) +
λ′

2
ϕ2
L ϕ

2
R

where λ > 0 in order for V to be bounded from below, and we choose µ2 > 0 in order
to achieve symmetry breaking in the usual manner. We rewrite the potential as

(28) V = −µ
2

2
(ϕ2
L + ϕ2

R) +
λ

4
(ϕ2
L + ϕ2

R)2 +
λ′ − λ

2
ϕ2
L ϕ

2
R

which tells us that the pattern of symmetry breaking depends crucially on the sign of
λ′−λ, since the first two terms do not depend on the direction of symmetry breaking (of
course µ2 > 0 guarantees that < ϕL >=< ϕR >= 0 is a maximum and not a minimum
of the potential).

Exercise: Show that if

1. λ′ − λ > 0, in order to minimize V we have either < ϕL >= 0, < ϕR >6= 0, or
vice versa. Due to the symmetry of V both solutions are equally probable.

2. λ′ − λ < 0, we need < ϕL >6= 0 6=< ϕR > and L-R symmetry implies < ϕL >=<
ϕR >.

Obviously we choose 1., which implies that P is broken in nature [30, 31].

4.2. Left-Right symmetry and massive neutrinos. – What fields should we choose
for the role of ϕL and ϕR? From the neutrino mass point of view, the ideal candidates
should be triplets, i.e.

(29) ∆L(3̄L , 1R , 2) ; ∆R(1̄L , 3R , 2)

where the quantum numbers denote SU(2)L , SU(2)R and B − L transformation
properties. Simply speaking, ∆L and ∆R are SU(2)L and SU(2)R triplets, respectively,
with B − L numbers equal to two.

Writing ∆L,R = ∆i
L,Rτi/2 (τi being the Pauli matrices) as is usual for the adjoint

representations, we find Yukawa couplings

(30) L∆ = h∆(`TL C iτ2 ∆L `L + L→ R) + h.c.
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To check the invariance of (30) under the Lorentz group and the gauge symmetry
SU(2)L × SU(2)R × U(1)B−L, recall

• that ψTLCψL is a Lorentz invariant quantity for a chiral Weyl spinor ψL (and
similarly for ψR).

• under the gauge symmetry SU(2)L

`L −→ UL`L , ∆L −→ UL∆LU†L
UTL (iτ2) = (iτ2)U†L(31)

and similarly for SU(2)R

• the B-L number of the ∆L,R fields is two.

This proves the invariance of (30) under all the relevant symmetries. Now, from their
definition, the fields ∆L,R have the following decomposition under the charge eigenstates

(32) ∆L,R =
[

∆+/
√

2 ∆++

∆0 −∆+/
√

2

]
L,R

where we use the fact that Tr∆L,R = 0 and the charge is computed from Q =
I3L + I3R + (B − L)/2.

Notice an interesting consequence of doubly charged physical Higgs scalars in this
theory. From the general analysis of the spontaneous L-R symmetry breaking, we know
that for a range of parameters of the potential the minimum of the theory can be chosen
as

(33) 〈∆L〉 = 0 , 〈∆R〉 =
[

0 0
vR 0

]
From (30), we the obtain the mass for the right-handed neutrino νR

(34) Lm = h∆ vR (νTR C νR + ν†R C
† ν∗R)

Thus the right-handed neutrino gets a large mass MR = h∆vR, which corresponds to
the scale of breaking of parity. At the same time, the original gauge symmetry is broken
down to the Standard Model one

(35) SU(2)L × SU(2)R × U(1)B−L
<∆R>−→ SU(2)L × U(1)Y



Theory of neutrino masses and mixings 13

This can be checked by computing the gauge boson mass matrix. By defining the
right-handed charged gauge boson

(36) W±R =
A1
R ∓ iA2

R√
2

we get

M2
WR

= g2
R v

2
R(37)

M2
ZR

= 2(g2 + g2
B−L) v2

R(38)

where

(39) ZR =
gB−LA

3
R + gRAB−L√
g2 + g2

B−L

is the new massive neutral gauge field, and gR and gB−L gauge couplings correspond
to SU2)R and B−L

2 , respectively.
Thus the scale of parity breaking is related to the mass of the right-handed charged

gauge bosons W±R . The predominant V-A nature of the weak interactions puts a lower
limit on MWR

, but the limit depends on the details of the model. In general the left an
right mixings between quarks (and leptons too) are not correlated an the MWR

can be
quite low. If the L and R mixings are the same (or approximately the same) as in some
minimal versions of the theory, the best limit comes from KL −KS mass difference

(40) MWR
> 2TeV

To complete the theory, one needs a Higgs bidoublet which contains the SM Higgs, so
that one can give masses to quarks and leptons. In the process we get the Dirac neutrino
mass between νL and νR and in turn we end up with the type I see-saw mechanism for
light neutrino masses.

Type I see-saw . From the Dirac Yukawas

(41) L = hΦ`L Φ `R + h.c.

after the symmetry breaking the neutrino Dirac mass term is mD = hΦ〈Φ〉. The neutrino
mass terms become

(42) mD`L`R +MR`
T
RC`R + h.c.
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and the neutrino mass matrix takes clearly the seesaw form.
The important point here is that the mass of νR is determined by the scale of parity

breaking and the smallness of the neutrino mass is a reflection of the predominant V-
A structure of the weak interaction and provides a probe of parity restoration at high
energies E > MWR

.

Type II see-saw . The gauge symmetry of the Left-Right model allows also for the fol-
lowing term in the potential that we have ignored before for simplicity

(43) ∆V = α∆†LΦ∆RΦ†

which implies that 〈∆L〉 cannot vanish.

Exercise: Show that

(44) 〈∆L〉 ' α
M2
W 〈∆R〉
M∆L

' αM
2
W

MR

which leads to type II see-saw.

The predictions for neutrino mass depend crucially on MWR
, but the L-R symmetric

model by itself cannot give us its value. This is cured in SO(10) grand unified theory,
where we will see that this scale is very large which fits perfectly with observed neutrino
masses.

4.3. Charge conjugation as L-R symmetry . – Since charge conjugation (see Appendix
A)

(45) (ψC)L ≡ Cψ̄TR

is also a transformation between left and right, one can as well use C as a L-R
symmetry of this theory. In the limit of CP invariance, these symmetries are equivalent;
the difference lies only in the tiny breaking of CP. The above discussion goes almost
unchanged and we leave it as an exercise for a reader to go through.

Exercise: Rewrite the above left-right symmetric theory, both gauge and Yukawa
couplings with L-R symmetry as C instead of P.

We will see that in SO(10) this symmetry introduced here ad-hoc, is an automatic
finite gauge transformation.

It would be natural to go directly to SO(10) now, but it will be helpful to master first
the minimal grand unified theory based on SU(5) symmetry, the minimal gauge group
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that the embed the SM symmetry. In order to be as pedagogical as possible, I have
included Appendices C and D on SU(N) and SO(2N) groups, respectively. In particular,
Appendix deals with the spinorial representations of SO(2N), a possibly new topic for
most of the readers. There are a number of exercises that should help you know whether
you have a mastery of the necessary group theory.

5. – SU(5): A Prototype GUT

The minimal group that can unify the Standard Model (SM) is SU(5), a group of
rank four. It is actually the minimal group that can unify the SU(2)L and SU(3)c of the
SM, the U(1) comes for free.

It is natural that we should try to put the electro-weak doublet Φ and the new color
triplet hα in the 5-dimensional fundamental representation

(46) 5H = Φ =


hr

hg

hb

φ+

φ0


SU(3)c}
SU(2)L

where in the obvious notation the SU(3)c symmetry is acting on the first 3 components
and the SU(2)L on the last two.

5.1. Structure. –

5.1.1. Fermions. We have 15 Weyl fields in each generation and it is natural to try to
put them in a 15-dimensional symmetric representation of SU(5). Now

(47) 5⊗ 5 = 15s + 10as

Since 5 = (3c , 1L)+(1c , 2L) (in an obvious notation), since (3c⊗3c)s = 6c, and since
quarks come only in color triplets, we must abandon the idea of 15S . It is not anomaly
free anyway, it could not have worked. What about 5 and 10as ? The quantum numbers
of 5 from (46) imply uniquely

(48) 5F ≡ ψ =


dr

dg

db

e+

−νC


R

(recall that (fC)R ≡ Cf̄L).
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Now, from ψ −→ Uψ under SU(5), the 10-dimensional representation χ must trans-
form as

(49) χ −→ U χ UT

This is enough to give the quantum numbers of the particles in 10

(50) χ =
1√
2


0 uCb −uCg −ur −dr
−uCb 0 uCr −ug −dg
uCg −uCr 0 −ub −db
ur ug ub 0 e+

dr dg db −e+ 0


L

Notice that in (48), a minus sign convention for the νC field is to ensure that(
e+

−νC
)
R

and
(
e

ν

)
L

transform identically, and in (50) the signs are the property of

χ being antisymmetric. We will work in the future with 10F and 5̄F (instead of 5F ).
We can see furthermore that a unified theory such as SU(5) explains charge quanti-

zation, i.e. it relates quark and lepton charges. From (48)

(51) Q(dC) = −1
3
Q(e) =

1
3

and then from (50) we see that Q(u) = Q(d) + 1 = 2/3.

5.1.2. Interactions. The interactions of fermions with gauge bosons are

(52) Lf = iψ̄γµDµψ − iT rχ̄γµDµχ

where

(53) Dµχ = ∂µχ− ig(Aµχ+ χATµ )

There are of course the old QCD and SU(2)L × U(1) interactions with gs = gW = g,
and sin2θW = 3/8, the couplings at the unification scale where full SU(5) is operative.
Furthermore, there are new X and Y bosons who carry both color and flavor with charges
4/3 and 1/3 respectively. Their interactions are

L(X,Y ) =
g√
2
X̄α
µ

[
d̄αRγ

µe+
R + d̄αLγ

µe+
L + εαβγ ū

cγ
L γµuβL

]
+

g√
2
Ȳ αµ
[
−d̄αRγµνCR + ūαLγ

µe+
L + εαβγ ū

cγ
L γµdβL

]
+ h.c.(54)
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As expected, due to the nontrivial color and flavor characteristics of the quarks, the X
and Y couple to the quark-quark and quark-lepton states. It is clear that B and L are
violated, although for some magic reason B−L is conserved (more about it later). This
leads to the decay of the proton. By analogy with the usual weak decay n→ p+ e+ ν̄,
µ→ e+ ν̄e + νµ the proton decay rate can be estimated as

(55) Γp '
g4

M4
X

m5
p

From (τp)exp > 1033yr we get MX > 1015.5GeV ; later we will show that we can
actually compute MX .

5.2. Symmetry Breaking . – The first stage of symmetry breaking down to the SM
is achieved by the adjoint Higgs Σ = 24H . Assume, only for the sake of simplicity, the
discrete symmetry Σ → −Σ. Then the most general renormalizable potential for Σ is
given by

(56) V (Σ) = −µ
2

2
TrΣ2 +

1
4
a (TrΣ2)2 +

1
2
b TrΣ4

Now, since 〈Σ〉 is a Hermitean matrix it can be diagonalized by an SU(5) rota-
tion. Assume now that it is in the same direction as the hypercharge: 〈Σ〉 ∝ Y =
vX diag(1, 1, 1,−3/2,−3/2).

From (56) you get then µ2 = 1
2 (15a+7b) v2

X , which, for µ2 > 0, implies (15a+7b) > 0.
In order to check that this is a local minimum, we must show that all the second

derivatives are positive. Since Σ has exactly the same form as the gauge boson matrix,
we can write

(57) Σ = 〈Σ〉+


Σ8 +

√
3
5

(
− 2

3

)
1cΣ0 Σ̄X Σ̄Y

ΣX
√

1
2Σ3 +

√
3
5Σ0 Σ+

ΣY Σ− −
√

1
2Σ3 +

√
3
5Σ0


where Σ8 are the analogs of gluons, ΣX and ΣY the analogs of X and Y , Σ3, Σ+,

Σ− and Σ0 the analogs of W 3, W+, W− and B, respectively. The masses of the particle
masses in Σ are



18 G. Senjanović

m2(Σ8) =
5
4
b v2

X

m2(Σ3) = m2(Σ±) = 5b v2
X

m2(Σ0) =
15a+ 7b

2
v2
X

m2(ΣX) = m2(ΣY ) = 0(58)

Thus for 15a+ 7b > 0, b > 0 the extremum is a local minimum of the theory. Notice
that ΣX and ΣY are would-be Goldstone bosons of the theory; they get “eaten” by the
X and Y gauge fields, i.e. they become their longitudinal components.

Finally, one can show that the vev of Σ is actually a global minimum. In fact, other
extrema can be shown to be at best saddle points.

Exercise:
HARD. Prove that the above minimum is in fact global

Thus SU(5) can be successfully broken down to the standard model, since as we said
Y commutes with both the SU(3)c and SU(2)L × U(1)Y generators. This will be even
more evident from the study of the gauge bosons mass matrix. Since Σ is in the adjoint
representation, DµΣ = ∂µΣ− ig[Aµ,Σ], and one has

(59)
1
2

(Dµ < Σ >)†(Dµ < Σ >) =
25
8
g2v2

X

[
X̄a
µX

µ
a + Ȳ aµ Y

µ
a

]
where a as usual is the color index, a = r, g, b. As expected, the gluons and the
electro-weak gauge bosons remain massless, but X and Y get equal masses

(60) m2
X = m2

Y ≡M2
X =

25
8
g2v2

X

as a consequence of both SU(3)c and SU(2)L remaining unbroken. The original SU(5)
symmetry is broken down to SU(3)c × SU(2)L × U(1)Y .

The rest of the breaking is completed by a 5-dimensional Higgs multiplet Φ5 which
contains the Standard Model doublet. Let us study this in some detail including the full
SU(5) invariant potential. We can write

V (Σ,Φ) = −µ
2
Σ

2
TrΣ2 +

1
4
a( TrΣ2)2 +

1
2
b TrΣ4

− µ2
Φ

2
Φ†Φ +

λ

4
(Φ†Φ)2

+ αΦ†Φ TrΣ2 − βΦ†Σ2Φ(61)
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with a > 0, λ > 0, 15a+ 7b > 0 and β > 0. Since both SU(3)c and SU(2)L are unbroken
at this point, we can always rotate 〈Φ〉 into the form 〈ΦT 〉 = (vc, 0, 0, 0, vW ). It is only
the β term that is sensitive to the direction of < Φ > and it gives −βv2

X(v2
c + 9/4v2

W ),
which for β > 0 forms the solution vW 6= 0, vc = 0 in order to minimize the energy.

It is an easy exercise to compute the mass of the colored triplet scalar ha in 〈Φ〉, it is
m2
h = 5

2βv
2
X , which justifies the choice β > 0. It is also easy to show that

(62) M2
W =

g2

4λ

[
µ2

Φ +
8M2

X

25g2
(−15α+

9
2
β)
]

ButMX > 1015GeV , which implies an extraordinary fine-tuning in the above equation
of at least 26 orders of magnitude. The number on the right hand side of (62) is naturally
of order M2

X > 1030GeV 2; instead it ends up being ' (100GeV )2. This is known as the
hierarchy problem.

In the next subsection we will see that the colored triplet ha mediates proton decay
and thus it must be very heavy: mh > 1012GeV , implying that β cannot be taken
arbitrarily small. On the other hand, its partner η weighs < 1TeV , and this aspect of
the hierarchy problem is known as the doublet-triplet splitting problem.

Before we close this subsection, let us say a few words more on the hierarchy problem.
The problem is that the mass term for the Higgs scalars cannot be made small (or zero)
by any symmetry, unlike the case of fermions. There the limit mf = 0 corresponds to
the chiral symmetry f → γ5f , and thus the higher order corrections must also vanish
if mf = 0 at the tree level. In other words, the higher order corrections are necessarily
proportional to mf (tree), and so only logarithmically divergent. In the case of scalars
the divergence is quadratic and thus in the context of grand unified theories (GUTs)
such as SU(5) the natural value for MW is of order MX .

5.3. Yukawa Couplings and Fermion mass relations . – In the Standard Model the
left-handed fermions are doublets and the right-handed fermions are singlets, and so
their chiral property is more than manifest. In SU(5) the V-A structure of a family of
fermions is left-intact and here also there are no direct mass terms for fermions.

In the minimal SU(5) theory the fermion masses originate through the Yukawa cou-
plings of fermions with the light Higgs Φ

(63) LY = fd ψ̄R χΦ† + fu
1
2
χT C χΦ + h.c.

where C is the Dirac conjugation matrix, and fu is clearly a symmetric matrix. The
symbolic notation of (63) should read in the SU(5) notation as

ψ̄R χΦ† = ψ̄R i χ
ij Φ†j

χT C χΦ = εijklm (χT )ij C χkl Φm(64)
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With < Φ >T= ( 0 0 0 0 vW ), we get for fermionic masses

Lm = fdvW (d̄RdL + ē+
Re

+
L)− fuvW (uc)TL C uL + h.c.

= −[fdvW (d̄d+ ēe)− fuvW ūu](65)

In other words, just as in the Standard Model mf = hfvW , furthermore charged
lepton and down quark masses are equal.

Exercise:
Explain why this happens

Unfortunately, this works bad even for the third family, since atMX one finds mb =
0.6mτ . This means that one must include higher dimensional operators in the Yukawa
sector, up to now neglected. Alternatively, you can include other Higgs representations
that can contribute to the fermionic masses; for example, you can add 45H .

Now, besides the usual Yukawa structure of the Higgs doublet in the SM, one has
new interactions of the color triplet hα. From (63) and (64) it is easy to compute it’s
couplings to fermions

(66) Lh = fdψ̄R iχ
i αh+

α + fuεijklα(χT )ijCχklhα

which gives

Lh =
{
fd
(
εαβγ ūcL β d

γ
R + ūαL e

+
R + d̄αL ν

c
R

)
+fu

(
εαβγ ūcRβ d

γ
L + ūαR e

+
L

)}
hα(67)

Notice that the structure of the above couplings (not the strength, though), is dictated
by the SU(3)C × SU(2)L ×U(1)Y gauge invariance only. This becomes more clear if we
write ūcLdR = uTRCdR and ūcRdL = uTLCdL.

It is clear that the interactions of H break B and L, just like those of X and Y .
Notice, though, that B−L is again conserved. In a complete analogy with the situation
encountered before for the X and Y bosons, we have the possible exchanges of hα which
leads to the proton decay. Of course, the amplitude is proportional to small Yukawa
couplings and the corresponding limit on its mass is somewhat less strict: mh ≥ 1012GeV .

5.3.1. Generations and their mixings. We know that in the standard model the neutral
current interactions are flavor diagonal and that the charged current processes lead to
flavor mixing and CP violation. How is this feature incorporated in the SU(5) theory
and what about new superweak interactions of the X and Y bosons ? The analysis is
straightforward and it proceeds along the same lines as in the SU(2)L × U(1)Y theory
[21]. I should stress that the predictions we will obtain are of course not realistic since in
this minimal theory neutrinos are massless and the down quark and charged lepton mass
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relations come out wrong. The minimal model discussed here should be viewed only as
a prototype of the what predictive theory should be like.

We diagonalize as usual fermion mass matrices by bi-unitary transformations

(68) U†LfMfURf = Df

where Df is diagonal, with its elements being real, positive numbers. Furthermore, since
Mu is symmetric

(69) URu = U∗LuK∗

where

(70) K =


eiφu

eiφe

eiφt

...


is the matrix of phases needed to ensure that the elements of Du are real and positive.
The above statements are equivalent to the redefinition of our original fermionic fields in
the Lagrangian

(71) fL,R → U†L,RfL,R

with UdL,R = Ue+L,R. Since on the other hand the neutrinos are massless, we can rotate
them any which way we wish and so we chose νcR → UdRνcR . Thus we can write for the
5-dimensional representation ψR → UdRψR, which means that UdR disappears since it is
just an overall factor. Suppressing the color index, we can write

χ→

 ULuKuc −ULuu −ULdd

−ULde+


L

= ULd

 UCKMKuc −UCKMu −d

−e+


L

(72)

where UCKM = U†LdULu. Again ULd is just an overall factor and so it will disappear. We
are left with the Cabibbo-Kobayashi-Maskawa unitary matrix and the phase matrix K

only. Thus the leptonic interactions are flavor conserving (since neutrinos are massless),
and the weak quark interactions involve UCKM only, as it must be. Finally, the X and
Y boson interactions involve no new flavor mixings besides UCKM , however there will be
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new phases hidden in K. In the physical basis we get

L(X,Y ) =
g√
2
X̄µ

[
d̄R γ

µ e+
R + d̄L γ

µ e+
L + ūcL γ

µK∗ uL
]

+
g√
2
Ȳµ

[
−d̄R γµ νcR + ūL γ

µ U†CKM e+
L + ūcL γ

µ U†CKM dL

]
+ h.c.(73)

From U11 ∝ cos θc, U12 ∝ sin θc we would expect

(74)
Γ(p→ π0µ+)
Γ(p→ π0e+)

∝ sin2 θc

Of course, this minimal SU(5) model is not realistic, for down and strange quark
masses are not equal to their leptonic counterparts at the unification scale. It is only
an illustration how proton decay partial rates are connected to the fermion masses and
mixings. The true test can only be possible in a completely realistic theory of fermion
masses and mixings (for a review and references, see [22] ).

In any case, the minimal SU(5) theory fails to explain neutrino masses; it is custom
fit for massless neutrinos. While non-minimal models can lead to non-vanishing neutrino
masses, by itself, SU(5) just like the standard model cannot relate neutrino masses to
charged fermion masses nor relate quark and lepton mixing angles. This is cured beau-
tifully in the SO(10) theory which requires the existence of right-handed neutrinos and
leads to small, non-vanishing neutrino masses through the see-saw mechanism. The main
ingredients are the left-right and quark-lepton symmetry inbuilt in SO(10) automatically.
However, SU(5) offers an interesting possibility of neutrino Yukawa couplings be probed
at LHC and before moving to SO(10) in Section 6 we will discuss a simple and predic-
tive SU(5) theory with an adjoint fermionic representation added to the minimal model
discussed above. We will show that the theory is completely realistic and testable at
colliders.

5.4. Low energy predictions . –

5.4.1. Ordinary SU(5). As is well known, the couplings run logarithmically with
energy. We have

(75)
1

αG(MW )
=

1
αU
− 1

2π
bG ln

MX

MW

for the gauge group G; MX is the energy where we imagine the unification to take place,
and αU is the value of the unified coupling at MX . One has a generic formula for the
running coefficient

(76) bG =
11
3
TGB −

2
3
TF −

1
3
TH
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where the Casimir TR for the representation R is defined by

(77) TRδij = TrTiTj

and Ti are the Hermitian traceless generators of a group in question. For the fun-
damental representation of SU(N) the convention is the one of SU(2): Tfund = 1

2 ,
which implies for the adjoint representation (relevant for gauge bosons) in SU(N):
Tadj = TGB = N .

This gives for the SU(3)C , SU(2)L and U(1) respectively

b3 =
33
3
− 4

3
ng

b2 =
22
3
− 4

3
ng −

1
6
nH

b1 =
3
5
bY = −4

3
ng −

1
10
nH(78)

where Ng is the number of generations, nH is the number of Higgs doublets (nH = 1 in
the minimal standard model).

We are now fully armed to check the evolution of these couplings above MW . From
above

(79)
1

αi(MW )
− 1
αj(MW )

=
bj − bi

2π
ln
MX

MW

In the above we have used α1(MX) = α2(MX) = α3(MX) = αU . From αem =
sin2 θWα2 = cos2 θWαY and αY = 3/5α1 we get easily

1
α2(MW )

− 1
α3(MW )

=
22 + nH

12π
ln
MX

MW

sin2 θW (MW ) =
3
8
− 110− nH

48π
αem(MW ) ln

MX

MW
(80)

Notice the prediction sin2 θW = 3
8 at MX which we discussed before. Now, for nH = 1

and by taking a α3(MW ) ' .12, α2(MW ) ' 1
30 we find MX ' 1016GeV , but

(81) sin2 θW (MW ) ' 0.2

The minimal SU(5) theory thus fails to meet the experiment.
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5.4.2. Supersymmetric SU(5). Supersymmetry, i.e. symmetry between bosons and
fermions guarantees the cancellation of quadratic divergences for the Higgs mass and
thus can make MW insensitive to MX . That is, we do not know why MW /MX is small,
but it is not a problem, since it will stay small in perturbation theory as long as the
scale of supersymmetry breaking is small ΛSS ' MW . The point is that the Higgs
mass term is invariant under the internal symmetries and thus is normally not protected
from high scales as manifested by quadratic divergences. The fermion masses, on the
other hand, are protected by chiral symmetry and thus insensitive to large scales as
manifested by ’small’ logarithmic divergences. In supersymmetry scalars and fermions
are not distinguishable and thus Higgs mass is under control too.

Then for every particle of the standard model there is a supersymmetric partner of
the opposite statistics

fermions ⇐⇒ sfermions

(quarks, leptons) (squarks, sleptons)
s = 1/2 s = 0

gauge bosons ⇐⇒ gauginos

(W±, Z, γ, gluons) (Wino, Zino, photino, gluinos)
s = 1 s = 1/2

Higgs scalar ⇐⇒ Higgsino

s = 0 s = 1/2

It is easy to see that the formulas for the running of the gauge couplings will be
affected by the presence of the new particles. From (76) we get

(82) bSSG =
(

11
3
− 2

3

)
TGB −

(
2
3

+
1
3

)
TF −

(
1
3

+
2
3

)
TH

or

(83) bG = 3TGB − TF − TH

where the added contributions in (82) are due to the superpartners.
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From (83) we get for the individual gauge couplings

bSS3 = 9− 2ng

bSS2 = 6− 2ng −
1
2
nH

bSS1 = −2ng −
3
10
nH(84)

where nH is again the number of Higgs doublets.
In exactly the same way as before, assuming the unification of couplings at MX , we

find

1
α2(MW )

− 1
α3(MW )

=
6 + nH

4π
ln
MX

MW

sin2 θW (MW ) =
3
8
− 30− nH

16π
αem(MW ) ln

MX

MW
(85)

In the minimal supersymmetric standard model (MSSM) nH = 2, and we find

(86) MX ' 1016GeV

and

(87) sin2 θW (MW ) =
1
5

+
7
15
αem(MW )
α3(MW )

' 0.23

MSSM agrees perfectly well with the experiment and with the above value for MX

we predict the proton lifetime

(88) τp ' 1036yr

which is above the experimental bound

(89) (τp)exp ≥ 6 · 1033yr

Now, if we are to take supersymmetry seriously, all the way up to the scale MX , we expect
of course new gauginos X̃, Ỹ , associated with the superheavy bosons X and Y of SU(5);
and also heavy Higgsinos h̃α from 5 of SU(5). The exchange of the heavy Higgsinos
leads to proton decay, suppressed only linearly by the GUT scale. More precisely, the
exchange of heavy Higgsinos gives the effective operator of the type

(90)
1
MX

QLQ̃Q̃

where Q and L stand for quarks and leptons and Q̃ stands for squarks. In turn the
squarks are changed into quarks through the exchange of gauginos and one obtains an
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operator of the form QQQL of the proton decay. While it depends on the Yukawa sector
and the sfermion masses and mixings, and thus not easy to predict precisely, proton
lifetime is typically very close (or below) the experimental limit.

5.5. SU(5) and neutrino mass. – The minimal theory of Georgi and Glashow fails in
two crucial ways:

a) it predicts massless neutrinos b) gauge couplings do not unify
We need a minimal extension that cures both problems. It does not suffice to add

right-handed neutrinos for they are gauge singlets and no not contribute to the running
of gauge couplings and thus cannot help the unification. In other words type I seesaw
fails in minimal SU(5). One could try type II, which requires a 15-dimensional Higgs
representation, but instead I wish to discuss here a particularly simple and predictive
theory [34], since it only requires adding the adjoint fermions 24F to the existing minimal
model with three generations of quarks and leptons, and 24H and 5H Higgs fields. This
automatically leads to the hybrid scenario of both type I and type III seesaw, since 24F
has also a SM singlet fermion, i.e. the right-handed neutrino. This should be clear to the
alert student. After all, the 24F is completely analogous to the 24F or even better the
adjoint gauge boson representation, which we studied at length. The fermionic triplet
simply corresponds to the SU(2) gauge boson triplet, whereas the singlet corresponds
to the U(1) gauge boson. This singlet can be interpreted as a right handed neutrino,
for it is a SM neutral particle with Yukawa couplings to the light neutrinos. The triplet
fermion on the other hand has the quantum numbers of the winos, the supersymmetric
partners of the SU(2) charged and neutral gauge bosons.

The main prediction of this theory is the lightness of the fermionic triplet. For a
conventional value of MGUT ≈ 1016 GeV, the unification constraints strongly suggest its
mass below TeV, relevant for the future colliders such as LHC. The triplet fermion decay
predominantly into W (or Z) and leptons, with lifetimes shorter that about 10−12 sec.

Equally important, the decays of the triplet are dictated by the same Yukawa cou-
plings that lead to neutrino masses and thus one has an example of predicted low-energy
seesaw directly testable at colliders and likely already at LHC.

The minimal implementation of the type III seesaw in non-supersymmetric SU(5)
requires a fermionic adjoint 24F in addition to the usual field content 24H , 5H and three
generations of fermionic 10F and 5F . The consistency of the charged fermion masses
requires higher dimensional operators in the usual Yukawa sector [35]. One must add the
new Yukawa interactions

LY ν = yi05̄iF 24F 5H(91)

+
1
Λ

5̄iF
[
yi124F 24H + yi224H24F + yi3Tr (24F 24H)

]
5H + h.c. .

After the SU(5) breaking one obtains the following physical relevant Yukawa interactions
for neutrino with the triplet TF ≡ ~TF · ~σ and singlet SF fermions (together with mass
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terms for TF and SF

(92) LY ν = Li
(
yiTTF + yiSSF

)
H +

mS

2
SFSF +

mT

2
TFTF + h.c.

where yiT , yiS are two different linear combinations of yi0 and yiavGUT /Λ (a = 1, 2, 3), Li
are the lepton doublets and H is the Higgs doublet. It is clear from the above formula
that besides the new appearance of the triplet fermion, the singlet fermion in 24F acts
precisely as the right-handed neutrino; it should not come out as a surprise, as it has the
right SM quantum numbers.

After the SU(2)×U(1) symmetry breaking (〈H〉 = v ≈ 174GeV), one obtains in the
usual manner the light neutrino mass matrix upon integrating out SF and TF

(93) mij
ν = v2

(
yiT y

j
T

mT
+
yiSy

j
S

mS

)

with mT ≤ 1 TeV (see below) and mS undetermined.
From the above formula, one important prediction emerges immediately: only two

light neutrinos get mass, while the third one remains massless. This is understood readily.
First, the Yukawas here are vectors, and for example the vector coupling corresponding
to the triplet can be rotated in the say 3rd direction. Thus only one light neutrino
effectively coupled to the triplet, i.e. only one neutrino gets the mass through this
coupling. Obviously, the same could have been said about the singlet an thus only two
massive light neutrinos. This is of course independent of the nature of the heavy states,
and the number of light massive neutrinos is in direct proportion to the number of heavy
fermions, be they singlets or triplets.

The mass of the fermionic triplet is found by performing the renormalization group
analysis as before. From [34] one has

exp
[
30π

(
α−1

1 − α
−1
2

)
(MZ)

]
=(94) (

MGUT

MZ

)84
((

mF
3

)4
mB

3

M5
Z

)5(
MGUT

mF
(3,2)

)20(
MGUT

mT

)
,

exp
[
20π

(
α−1

1 − α
−1
3

)
(MZ)

]
=(95) (

MGUT

MZ

)86
((

mF
8

)4
mB

8

M5
Z

)5(
MGUT

mF
(3,2)

)20(
MGUT

mT

)−1

,

where mF,B
3 , mF,B

8 , mF
(3,2) and mT are the masses of weak triplets, color octets, (only

fermionic) leptoquarks and (only bosonic) color triplets respectively.
We discussed at length the well known problem in the standard model of the low

meeting scale of α1 and α2. It is clear that the SU(2) triplet fermions are ideal from
this point of view since they slow down the running of α2, while leaving α1 intact (other
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particles have non vanishing hypercharge and thus make α1 grow faster as to meet α2

even before). They should clearly be as light as possible while the color triplet as heavy
as possible. In order to illustrate the point, take mF

3 = mB
3 = MZ and mT = MGUT .

This gives (α−1
1 (MZ) = 59, α−1

2 (MZ) = 29.57, α−1
3 (MZ) = 8.55) MGUT ≈ 1015.5 GeV.

Increasing the triplet masses mF,B
3 reduces MGUT dangerously, making proton decay too

fast.
Finally, one can ask, where must the octets be. Since the triplets slowed down the

running of α2, the meting point of α2 and α3 would become too large, unless α3 gets
slowed down too. Thus the octets must lie much below MGUT , but since they contribute
to the running more than the triplets, they should be also much above the weak scale,
and one gets m8 = 107 − 108GeV

For a more detailed discussion of unification constraints and especially the phe-
nomenology of the triplet relevant for LHC see [36]. The bottom line is a prediction
of the light weak fermion triplet

(96) mT < TeV

Its decays proceed via its Yukawa couplings yT and thus probe the neutrino mass.
One can parametrize yT through the lepton mixing matrix.

In normal hierarchy (NH) i.e. mν
1 = 0,

(97) vyi∗T = i
√
mT

(
Ui2
√
mν

2 cos z ± Ui3
√
mν

3 sin z
)
,

while in inverted hierarchy (IH) i.e. mν
3 = 0,

(98) vyi∗T = i
√
mT

(
Ui1
√
mν

1 cos z ± Ui2
√
mν

2 sin z
)
.

where z is a complex parameter.
You can readily show that in NH the neutrino masses are

(99) mν
1 = 0 , mν

2 =
√

∆m2
S , mν

3 =
√

∆m2
A + ∆m2

S ,

while in the IH case

(100) mν
1 =

√
∆m2

A −∆m2
S , mν

2 =
√

∆m2
A , mν

3 = 0 .

The the predominant decay modes of the triplets [36] are T → W (Z) + light lepton
whose strength is dictated by the neutral Dirac Yukawa couplings.
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Γ(T− → Ze−k ) =
mT

32π

∣∣ykT ∣∣2(1− m2
Z

m2
T

)2(
1 + 2

m2
Z

m2
T

)
,(101)

∑
k

Γ(T− →W−νk) =
mT

16π

(∑
k

∣∣ykT ∣∣2
)(

1− m2
W

m2
T

)2(
1 + 2

m2
W

m2
T

)
,(102)

Γ(T 0 →W+e−k ) = Γ(T 0 →W−e+
k ) =

=
mT

32π

∣∣ykT ∣∣2(1− m2
W

m2
T

)2(
1 + 2

m2
W

m2
T

)
,(103)

∑
k

Γ(T 0 → Zνk) =
mT

32π

(∑
k

∣∣ykT ∣∣2
)(

1− m2
Z

m2
T

)2(
1 + 2

m2
Z

m2
T

)
,(104)

where we averaged over initial polarizations and summed over final ones. From (103)
one sees that the decays of T 0, just as those of righthanded neutrinos, violate lepton
number. In a machine such as LHC one would typically produce a pair T+T 0 (or T−T 0),
whose decays then allow for interesting ∆L = 2 signatures of same sign dileptons and
4 jets. This fairly SM background free signature is characteristic of any theory with
righthanded neutrinos as discussed in [62]. The main point here is that these triplets are
really predicted to be light, unlike in the case of righthanded neutrinos. We discuss this
further in the Section 7 on lepton number violation.

6. – SO(10): family unified

The minimal gauge group that unifies the gauge interactions of the standard model
was seen in the previous subsection to be based on SU(5) and studied at length. It is
tailor fit for massless neutrinos just as the SM, for in the minimal version of the the-
ory neutrinos get neither Dirac nor Majorana mass terms. Furthermore, the ordinary,
non supersymmetric theory fails to unify gauge couplings. We found that the simple
extension with the adjoint fermion representation provides a minimal and remarkably
predictive theory with light fermionic triplet expected at LHC and whose decay rates
probe the Dirac Yukawa couplings of neutrinos. We have a theory that works and fur-
thermore gives serious hope for an old dream of verifying seesaw mechanism at colliders.
So why should one ever wish to go beyond SU(5)? We can think of at least two reasons.
First, if one is to worry about the Higgs mass naturalness, one may wish to include su-
persymmetry. While SU(5) with the low energy supersymmetry has a rather appealing
feature of providing automatically (as predicted many years ago) a gauge coupling unifi-
cation, it is not an interesting theory of fermion masses and mixings. First of all, it offers
no explanation for the smallness of R-parity violation in nature, and at the same time
it requires a certain amount of arbitrary and unpredicted R-parity violation in order to
provide neutrino masses. One can also include the type II seesaw into the theory through
the 15H supermultiplet, and even attribute to it a mediation of supersymmetry breaking,
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but one ends up without any direct low energy probes or interesting quark-lepton mass
and mixings relations. This is where SO(10) fits ideally, for it also unifies matter besides
the interactions. It works nicely without supersymmetry too, for it provides a natural
unification of gauge couplings through the intermediate scale of L-R symmetry breaking.

The general case SO(2N) is presented in Appendix D. The one important representa-
tion of SO(10) is a 16-dimensional spinor, which can be decomposed under SU(5) as 16
= 10 + 5̄ +1. It unifies a family of fermions with an addition of a right handed neutrino
per family. This minimal grand unified theory that unifies matter on top of interactions
suggests naturally small neutrino masses through the seesaw mechanism. Furthermore,
it relates neutrino masses and mixings to the ones of charged fermions, and is predictive
in its minimal version. In this Section I discuss some salient features in this theory while
focusing on its minimal realizations. The crucial representation is a self-dual five index
anti-symmetric one responsible for right-handed neutrino masses and is a must, whether
being elementary of composed at the loop level or through the higher dimensional opera-
tors. A number of different minimal realizations of SO(10) depends on this construction,
and what follows summarizes a few of them.

There are a number of features that make SO(10) special:

1. a family of fermions is unified in a 16-dimensional spinorial representation; this in
turn predicts the existence of right-handed neutrinos

2. L−R symmetry is a finite gauge transformation in the form of charge conjugation.
This is a consequence of both left-handed fermions fL and its charged conjugated
counterparts (f c)L ≡ Cf

T

R residing in the same representation 16F .

3. in the supersymmetric version, matter parity M = (−1)3(B−L), equivalent to the
R-parity R = M(−1)2S , is a gauge transformation [42], a part of the center Z4

of SO(10). It simply reads 16 → −16, 10 → 10. Its fate depends then on the
pattern of symmetry breaking (or the choice of Higgs fields); it turns out that
in the renormalizable version of the theory R-parity remains exact at all energies
[43, 44]. The lightest supersymmetric partner (LSP) is then stable and is a natural
candidate for the dark matter of the universe.

4. its other maximal subgroup, besides SU(5)×U(1), is SO(4)× SO(6) = SU(2)L ×
SU(2)R×SU(4)c symmetry of Pati and Salam. It explains immediately the some-
what mysterious relations md = me (or md = 1/3me) of SU(5).

5. the unification of gauge couplings can be achieved with or without supersymmetry.

6. the minimal renormalizable version (with no higher dimensional 1/MPl terms) of-
fers a simple and deep connection between b−τ unification and a large atmospheric
mixing angle in the context of the type II see-saw [45].

In order to understand some of these results, and in order to address the issue of con-
struction of the theory, we turn now to the Yukawa sector.
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6.1. Yukawa sector . – Fermions belong to the spinor representation 16F [20]. From

(105) 16× 16 = 10 + 120 + 126

the most general Yukawa sector in general contains 10H , 120H and 126H , respectively the
fundamental vector representation, the three-index antisymmetric representation and the
five-index antisymmetric and anti-self-dual representation. This can be seen by analogy
with the Yukawa couplings of SO(6) (see Section ??),

Ly = y10ΨTBΓiΨΦi + y120ΨTBΓiΓjΓkΨΦ[ijk]

+ y126ΨTBΓiΓjΓkΓlΓmΨΦ−[ijklm](106)

126H is necessarily complex, supersymmetric or not; 10H and 126H Yukawa matrices are
symmetric in generation space, while the 120H one is antisymmetric.

Understanding fermion masses is easier in the Pati-Salam language of one of the two
maximal subgroups of SO(10), GPS = SU(4)c × SU(2)L × SU(2)R (the other being
SU(5)× U(1)). Let us decompose the relevant representations under GPS

16 = (4, 2, 1) + (4̄, 1, 2)

10 = (1, 2, 2) + (6, 1, 1)

120 = (1, 2, 2) + (6, 3, 1) + (6, 1, 3) + (15, 2, 2) + (10, 1, 1) + (10, 1, 1)

126 = (10, 3, 1) + (10, 1, 3) + (15, 2, 2) + (6, 1, 1)(107)

I illustrate the decomposition of a spinor representation 16 = Ψ+ (see Appendix D)

(108) Ψ+ ≡ |ε1...ε5〉; ε1..ε5 = +1

It contains

(109) ε1ε2ε3 = +1; ε4ε5 = +1

and

(110) ε1ε2ε3 = −1; ε4ε5 = −1

The first one is 4 of SU4)C , doublet of SU(2)L and the latter 4̄ of 4 of SU4)C , doublet
of SU(2)R, as can be read off readily from the sections on SO(4) and SO6) of Appendix
D.
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Exercise: Try to arrive at the rest of the above decomposition using the material in
Appendix D

Clearly, the see-saw mechanism, whether type I or II, requires 126: it contains both
(10, 1, 3) whose vev gives a mass to νR (type I), and (10, 3, 1), which contains a color
singlet, B−L = 2 field ∆L, that can give directly a small mass to νL (type II). A reader
familiar with the SU(5) language sees this immediately from the decomposition under
this group

(111) 126 = 1 + 5 + 15 + 45 + 50

The 1 of SU(5) belongs to the (10, 1, 3) of GPS and gives a mass for νR, while 15
corresponds to the (10, 3, 1) and gives the direct mass to νL.

Of course, 126H can be a fundamental field, or a composite of two 16H fields, or can
even be induced as a two-loop effective representation built out of a 10H and two gauge
45-dim representations. In what follows I shall discuss carefully all three possibilities.

Normally the light Higgs is chosen to be the smallest one, 10H . Since 〈10H〉 =
〈(1, 2, 2)〉PS is a SU(4)c singlet, md = me follows immediately, independently of the
number of 10H you wish to have. Thus we must add either 120H or 126H or both in
order to correct the bad mass relations. Both of these fields contain (15, 2, 2)PS , and its
vev gives the relation me = −3md.

As 126H is needed anyway for the see-saw, it is natural to take this first. The crucial
point here is that in general (1, 2, 2) and (15, 2, 2) mix through 〈(10, 1, 3)〉 [46] and thus
the light Higgs is a mixture if the two. In other words, 〈(15, 2, 2)〉 in 126H is in general
non-vanishing (1). It is rather appealing that 10H and 126H may be sufficient for all the
fermion masses, with only two sets of symmetric Yukawa coupling matrices.

6.2. An instructive failure. – Before proceeding, let me emphasize the crucial point
of the necessity of 120H or 126H in the charged fermion sector on an instructive failure:
a simple and beautiful model by Witten [47]. The model is non-supersymmetric and
the SUSY lovers may place the blame for the failure here. It uses 〈16H〉 in order to
break B−L, and the ”light” Higgs is 10H . Witten noticed an ingenious and simple way
of generating an effective mass for the right-handed neutrino, through a two-loop effect
which gives

(112) MνR
' yup

(α
π

)2

MGUT

(1) In supersymmetry this is not automatic, but depends on the Higgs superfields needed to
break SO(10) at MGUT .
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where one takes all the large mass scales, together with 〈16H〉, of the order MGUT . Since
〈10H〉 = 〈(1, 2, 2)PS〉 preserves quark-lepton symmetry, it is easy to see that

Mν ∝ Mu

Me = Md

Mu ∝ Md(113)

so that Vlepton = Vquark = 1. The model fails badly.
The original motivation of Witten was a desire to know the scale of MνR

and increase
Mν , at that time neutrino masses were expected to be larger. But the real achievement
of this simple, elegant, minimal SO(10) theory is the predictivity of the structure of MνR

and thus Mν . It is an example of a good, albeit wrong theory: it fails because it predicts.
What is the moral behind the failure? Not easy to answer. The main problem, in my

opinion, was to ignore the fact that with only 10H already charged fermion masses fail.
One needs to enlarge the Higgs sector, by adding for example a 120H ; the theory still
leads to interesting predictions while possible completely realistic.

6.3. Non-supersymmetric SO(10) . – In the last two decades, and especially after its
success with gauge coupling unification, grand unification by an large got tied up with
low energy supersymmetry. This is certainly well motivated, since supersymmetry is the
only mechanism in field theory which controls the gauge hierarchy. In SO(10), gauge
coupling unification needs no supersymmetry whatsoever. It only says that there must
be intermediate scales [48], such as Pati-Salam SU(4)c×SU(2)L×SU(2)R or Left-Right
SU(3)c × SU(2)L × SU(2)R × U(1)B−L symmetry, between MW and MGUT . An oasis
or two in the desert is always welcome.

Thus if we accept the fine-tuning, as we seem to be forced in the case of the cosmo-
logical constant, we can as well study the ordinary, non-supersymmetric version of the
theory. In this context the idea of the cosmic attractors [49] as the solution to the gauge
hierarchy becomes extremely appealing. It needs no supersymmetry whatsoever, and en-
hances the motivation for ordinary grand unified theories. In what follows I discuss some
essential features of a possible minimal such theory with 126H as a necessary ingredient
for see-saw.

Let us start by analyzing the case with an extra 10H field [61]. The most general
Yukawa interaction is

(114) LY = 16F
(
10HY10 + 126HY126

)
16F + h.c. .

where Y10 and Y126 are symmetric matrices in the generation space. With this one obtains
relations for the Dirac fermion masses

MD = M1 +M0 , MU = c1M1 + c0M0 ,

ME = −3M1 +M0 , MνD
= −3c1M1 + c0M0,(115)
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where we have defined

(116) M1 = 〈2, 2, 15〉d126 Y126 , M0 = 〈2, 2, 1〉d10 Y10 ,

and

(117) c0 =
〈2, 2, 1〉u10

〈2, 2, 1〉d10

, c1 =
〈2, 2, 15〉u126

〈2, 2, 15〉d126

.

In the physically sensible approximation θq = Vcb = 0, these relations imply

(118) c0 =
mc(mτ −mb)−mt(mµ −ms)

msmτ −mµmb
≈ mt

mb
,

Exercise: Derive this formula.

Notice that this means that 10H cannot be real, since in that case one would have
|〈2, 2, 1〉u10| = |〈2, 2, 1〉d10|, implying mt/mb of order one. It is necessary to complexify
10H , just as in a supersymmetric theory. If taking advantage of this fact one decides to
impose a Peccei-Quinn symmetry, thus providing a Dark Matter candidate, the Yukawa
sector in non-supersymmetric and supersymmetric models is similar.

In this case, this model has the interesting feature of automatic connection between
b − τ unification and large atmospheric mixing angle in the type II see-saw. From
MνL

∝ Y126 , one has MνL
∝ MD −ME . as shown in [45, 50]. This fact has inspired

the careful study of the analogous supersymmetric version where mτ ' mb at the GUT
scale works rather well [55] . In the non-supersymmetric theory, b − τ unification fails
badly, mτ ∼ 2mb [56]. The realistic theory will require a Type I seesaw, or an admixture
of both possibilities.

Suppose now that we choose instead 120H [61]. Since Y120 is antisymmetric, this
means only 3 new complex couplings on top of Y126. On gets in this case

MD = M1 +M2 , MU = c1M1 + c2M2 ,(119)

ME = −3M1 + c3M2 , MνD
= −3c1M1 + c4M2

where M1 and c1 are defined in (116),(117), and:

M2 = Y120

(
〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

)
, c2 =

〈2, 2, 1〉u120 + 〈2, 2, 15〉u120

〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

,

c3 =
〈2, 2, 1〉d120 − 3〈2, 2, 15〉d120

〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

, c4 =
〈2, 2, 1〉u120 − 3〈2, 2, 15〉u120

〈2, 2, 1〉d120 + 〈2, 2, 15〉d120

.(120)
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It is easy to see that again there is a need to complexify the Higgs fields, by arguments
similar to the case of 10H .

In order to obtain algebraic expressions, from which a clearer physical meaning can
be extracted, one can restrict the analysis to the second and third generations. Later,
numerical studies could include the effects of the first generation as a perturbation. In
the basis where M1 is diagonal, real and non-negative, for the two-generation case one
gets:

(121) M1 ∝
(

sin2 θ 0
0 cos2 θ

)
and the most general charged fermion matrix can be written as:

(122) Mf = µf

(
sin2 θ i(sin θ cos θ + εf )

−i(sin θ cos θ + εf ) cos2 θ

)
,

where f = D,U,E stands for charged fermions and εf vanishes for negligible second
generation masses. In other words |εf | ∝ mf

2/m
f
3 . Furthermore the real parameter µf

sets the third generation mass scale. By calculating up to leading order in |εf |, we have
to the following interesting predictions [61]:

1. type I and type II seesaw lead to the same structure

(123) M I
N ∝M II

N ∝M1

so that in the selected basis the neutrino mass matrix is diagonal. We see that the
angle θ has to be identified with the leptonic (atmospheric) mixing angle θA up to
terms of the order of |εE | ≈ mµ/mτ . For the neutrino masses we obtain from (121)

(124)
m2

3 −m2
2

m2
3 +m2

2

=
cos 2θA

1− sin2 2θA/2
+O(|ε|)

Exercise: Derive this formula.

This equation points to an intriguing correlation: the degeneracy of neutrino masses
is measured by the maximality of the atmospheric mixing angle.

2. the ratio of tau and bottom mass at the GUT scale is given by:
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(125)
mτ

mb
= 3 +O(|ε|)

This is not correct in principle, the extrapolation in standard model gives mτ ≈
2mb. However, several effects modify this conclusion, such as for example the
inclusion of the first generation or the running of Yukawa couplings. We would in
any case expect that mb comes out as small as possible.

3. the quark mixing is found to be:

(126) |Vcb| = | cos 2θA (εD − εU )|+O(|ε2|)

This equation demonstrates the successful coexistence of small and large mixing
angles. In order for it to work quantitatively, | cos 2θA| should be as large as
possible, i.e. θA should be as far as possible from the maximal value 45◦. To
make a definite numerical statement, again, the effects from the first generation
and the loops have to be included.

6.4. Supersymmetric case. – In supersymmetry 10H is necessarily complex and the
bidoublet (1, 2, 2) in 10H contains the two Higgs doublets of the MSSM, with the vevs vu

and vd in general different: tanβ ≡ vu/vd 6= 1 in general. In order to study the physics
of SO(10), we need to know what the theory is, i.e. its Higgs content. There are two
orthogonal approaches to the issue, as we discuss now.

bf Small representations The idea: take the smallest Higgs fields (least number of
fields, not of representations) that can break SO(10) down to the MSSM and give realistic
fermion masses and mixings. The following fields are both necessary and sufficient

(127) 45H , 16H + 16H , 10H

It all looks simple and easy to deal with, but the superpotential becomes extremely
complicated. First, at the renormalizable level it is too simple. The pure Higgs and the
Yukawa superpotential at the renormalizable level take the form

WH = m45452
H +m1616H16H + λ116HΓ216H45H

m10102
H + λ216HΓ16F 10H + λ316HΓ16H10H(128)

(129) Wy = y1016FΓ16F 10H

where Γ stands for the Clifford algebra matrices of SO(10), Γ1...Γ10, and the products
of Γ’s are written in a symbolic notation (both internal and Lorentz charge conjugation
are omitted).
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Clearly, both WH and Wy are insufficient. The fermion mass matrices would be com-
pletely unrealistic and the vevs 〈45H〉, 〈6H〉, 〈16H〉 would all point in the SU(5) direction.
Thus, one adds non-renormalizable operators

∆WH =
1

MPl

[
(452

H)2 + 454
H + (16H16H)2 + (16HΓ216H)2 + (16HΓ416H)2

+(16HΓ16H)2 + (16HΓ516H)2 + {16H → 16H}
+16HΓ416H452

H + 16HΓ316H45H10H + {16H → 16H}
]

(130)

∆Wy =
1

MPl

[
16FΓ16F 16HΓ16H + {16H → 16H}

16FΓ316F 45H10H + 16FΓ516F 16HΓ516H
]

(131)

where I take for simplicity all the couplings to be unity; there are simply too many of
them. The large number of Yukawa couplings means very little predictivity.

The way out is to add flavor symmetries and to play the texture game and thus reduce
the number of couplings. This in a sense goes beyond grand unification and appeals to
new physics at MPl and/or new symmetries.

To me, maybe the least appealing aspect of this approach is the loss of R (matter)
parity due to 16H and 16H ; it must be postulated by hand as much as in the MSSM.

On the positive side, it is an asymptotically free theory and one can work in the
perturbative regime all the way up to MPl. While this sounds nice, I am not sure
what it means in practice. It would be crucial if you were able to make high precision
determination of MGUT or mT , the mass of colored triplets responsible for d = 5 proton
decay. The trouble is that the lack of knowledge of the superpotential couplings is
sufficient even in the minimal SU(5) theory to prevent this task; in SO(10) it gets even
worse.

Maybe more relevant is the fact that in this scenario MR ' M2
GUT /MPl ' 1013 −

1014GeV , which fits nicely with the neutrino masses via see-saw. Furthermore, see-saw
can be considered ”clean”, of the pure type I, since the type II effect is suppressed by
1/MPl. Most important, the mb ' mτ relation from (129) is maintained due to small
1/MPl effects relevant only for the first two generations.

Large representations. The non-renormalizable operators in reality mean invoking new
physics beyond grand unification. This may be necessary, but still, one should be more
ambitious and try to use the renormalizable theory only. This means large representations
necessarily: at least 126H is needed in order to give the mass to νR (in supersymmetry,
one must add 126H). The consequence is the loss of asymptotic freedom above MGUT ,
the coupling constants grow large at the scale ΛF ' 10MGUT .

Once we accept large representations, we should minimize their number. The minimal
theory contains, on top of 10H , 126H and 126H , also 210H [57, 58, 59, 60] with the
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decomposition

210H = (1, 1, 1)− + (15, 1, 1)+ + (15, 1, 3) + (15, 3, 1)

+(6, 2, 2) + (10, 2, 2) + (10, 2, 2)(132)

where the -(+) subscript denotes the properties of the color singlets under charge conju-
gation.

The Higgs superpotential is remarkably simple

WH = m210(210H)2 +m126126H126H +m10(10H)2 + λ(210H)3

+η126H126H210H + α10H126H210H + α10H126H210H(133)

and the Yukawa one even simpler

(134) WY = y1016FΓ16F 10H + y12616FΓ516F 126H

Remarkably enough, this may be sufficient, without any higher dimensional operators;
however, the situation is not completely clear.

There is a small number of parameters: 3 + 6x2 = 15 real Yukawa couplings, and
11 real parameters in the Higgs sector. In this sense the theory can be considered as
the minimal supersymmetric GUT in general [60]. As usual, I am not counting the
parameters associated with the SUSY breaking terms.

The nicest feature of this program (and the best justification for the use of large
representations) is the following. Besides the 〈(10, 1, 3)〉 which gives masses to the νR’s,
also the 〈(15, 2, 2)〉 in 126H gets a vev [58, 46]. Approximately

(135) 〈15, 2, 2〉126 '
MPS

MGUT
〈1, 2, 2〉

with MPS = 〈15, 2, 2〉 being the scale of SU(4)c symmetry breaking. In SUSY, MPS ≤
MGUT and thus one can have correct mass relations for the charged fermions.

What is lost, though, is the b− τ unification, i.e. with 〈(15, 2, 2)〉126 6= 0, mb = mτ at
MGUT becomes an accident. However, in the case of type II see-saw, there is a profound
connection between b−τ unification and a large atmospheric mixing angle. The fermionic
mass matrices are obtained from (134)

Mu = vu10y10 + vu126y126 ,

Md = vd10y10 + vd126y126 ,

Me = vd10y10 − 3vd126y126 ,

MνD
= vu10y10 − 3vu126y126 ,(136)

MνR
= y126〈(10, 1, 3)〉 ,(137)

MνL
= y126〈(10, 3, 1)〉 ,(138)

(139)
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where 〈(10, 3, 1)〉 'M2
W /MGUT provides a direct (type II) see-saw mass for light neutri-

nos. The form in (136) is readily understandable, if you notice that 〈(1, 2, 2)〉 is a SU(4)c
singlet with mq = m`, and 〈(15, 2, 2)〉 is a SU(4)c adjoint, with m` = −3mq The vevs of
the bidoublets are denoted by vu and vd as usual.

Now, suppose that type II dominates, or Mν ∝ y126 ∝Me −Md, so that

(140) Mν ∝Me −Md

Let us now look at the 2nd and 3rd generations first. In the basis of diagonal Me,
and for the small mixing εde

(141) Mν ∝
(
mµ −ms εde

εde mτ −mb

)
obviously, large atmospheric mixing can only be obtained for mb ' mτ [45].

Exercise: Prove that the above neutrino mass matrix requires b − τ unification in
order to lead to a large mixing angle. Use the fact that the second generation masses are
small in comparison with the third generation ones.

Of course, there was no reason whatsoever to assume type II see-saw. Actually, we
should reverse the argument: the experimental fact of mb ' mτ at MGUT , and large
θatm seem to favor the type type II see-saw. It can be shown, in the same approximation
of 2-3 generations, that type I cannot dominate: it gives a small θatm [50]. This gives
hope to disentangle the nature of the see-saw in this theory. As a check, it can be shown
that the two types of see-saw are really inequivalent [50].

I wish to stress an important feature of this programme. Since 126 (126) is invari-
ant under matter parity, R parity remains exact at all energies and thus the lightest
supersymmetric particle is stable and a natural candidate for the dark matter.

Mass scales. In SO(10) we have in principle more than one scale above MW (and ΛSUSY ):
the GUT scale, the Pati-Salam scale where SU(4)c is broken, the L-R scale where parity
(charge conjugation) is broken, the scales of the breaking of SU(2)R and U(1)B−L. Of
course, these may be one and the same scale, as expected with low-energy supersymmetry.
This solution is certainly there, since the gauge couplings of the MSSM unify successfully
and encourage the single step breaking of SO(10).

Is there any room for intermediate mass scales in SUSY SO(10)? It is certainly
appealing to have an intermediate see-saw mass scale MR, between 1012 − 1015GeV or
so. In the non-renormalizable case, with 16H and 16H , this is precisely what happens:
MR ' cM2

GUT /MPl ' c(1013 − 1014)GeV . In the renormalizable case, with 126H and
126H , one needs to perform a renormalization group study using unification constraints.
While this is in principle possible, in practice it is hard due to the large number of fields.
The stage has recently been set, for all the particle masses were computed [51, 52], and
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the preliminary studies show that the situation may be under control [53]. It is interesting
that the existence of intermediate mass scales lowers the GUT scale [51, 54], allowing for
a possibly observable d = 6 proton decay.

Notice that a complete study is basically impossible. In order to perform the running,
you need to know particle masses precisely. Now, suppose you stick to the principle of
minimal fine-tuning. As an example, you fine-tune the mass of the W and Z in the SM,
then you know that the Higgs mass and the fermion masses are at the same scale

(142) mH =

√
λ

g
mW , mf =

yf
g
mW

where λ is a φ4 coupling, and yf an appropriate fermionic Yukawa coupling. Of course,
you know the fermion masses in the SM model, and you know mH ' mW .

In an analogous manner, at some large scale mG a group G is broken and there are
usually a number of states that lie at mG, with masses

(143) mi = αimG

where αi is an approximate dimensionless coupling. Most renormalization group studies
typically argue that αi ' O(1) is natural, and rely on that heavily. In the SM, you could
then take mH ' mW , mf ' mW ; while reasonable for the Higgs, it is nonsense for the
fermions (except for the top quark).

In supersymmetry all the couplings are of Yukawa type, i.e. self-renormalizable, and
thus taking αi ' O(1) may be as wrong as taking all yf ' O(1). While a possibly reason-
able approach when trying to get a qualitative idea of a theory, it is clearly unacceptable
when a high-precision study of MGUT is called for.

Proton decay . As you know, d = 6 proton decay gives τp(d = 6) ∝M4
GUT , while (d = 5)

gives τp(d = 5) ∝M2
GUT . In view of the discussion above, the high-precision determina-

tion of τp appears almost impossible in SO(10) (and even in SU(5)).
You may wonder if our renormalizable theory makes sense at all. After all, we are

ignoring the higher dimensional operators of order MGUT /MPl ' 10−2 − 10−3. If they
are present with the coefficients of order one, we can forget almost everything we said
about the predictions, especially in the Yukawa sector. However, we actually know that
the presence of 1/MPl operators is not automatic (at least not with the coefficients of
order 1). Operators of the type (in symbolic notation)

(144) Op5 =
c

MPl
164
F

are allowed by SO(10) and they give

(145) Op5 =
c

MPl
[(QQQL) + (QcQcQcLc)]
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These are the well-known d = 5 proton decay operators, and for c ' O(1) they give
τp ' 1023yr. Agreement with experiment requires

(146) c ≤ 10−6

Exercise: Hard. Prove the above result. Use the fact that the supersymmetric oper-
ator of the type QQQL corresponds to an effective interaction QLQ̃Q̃ and then use the
interactions with gauginos to transform Q̃Q̃ into QQ in order to create a proton decay
operator QQQL. It happens at the one loop level.

Could this be a signal that 1/MPl operators are small in general? Alternatively, you
need to understand why just this one is to be so small. It is appealing to assume that
this may be generic; if so, neglecting 1/MPl contributions in the study of fermion masses
and mixings is fully justified.

7. – Majorana Neutrinos: lepton number violation and the origin of neutrino
mass

Majorana neutrino mass implies ∆L = 2 processes:

1. neutrino-less double β decay

2. same sign dilepton par production at colliders [62]

7.1. Neutrino-less double β decay . – This is the usual text-book example of ∆L = 2
and is often considered a probe of Majorana mν . However, the Majorana case needs
a completion of the SM and ββ0 depends in general on the completion. A simple and
clear example is provided by L−R symmetric theories with low MR scale in which case
there are new contributions to ββ0. The dominant one is due to the WR exchange and
right-handed neutrinos N

It gives

(147) (ββ0)RR ∝
1

M4
WR

(
1
MN

)
ee

to be compared with the usual WL contribution

(148) (ββ0)LL ∝
1

M4
WL

(mν)ee
p2

where we assume gL ' gR and p is the momentum exchange p ' 100 MeV.
We have

(149)
(ββ0)RR
(ββ0)LL

'
(
MWL

MWR

)4
p2

(mν)ee

(
1
MN

)
ee
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Fig. 4. – Neutrinoless double β decay through WR and N

For MR in the few TeV region and MN �TeV, the (RR) contribution tends to
dominate over the (LL) one, and clearly right-handed neutrinos should not be too light.

Since mν → 0 when yD → 0, you can imagine a situation when neutrino mass is
arbitrarily small, but (ββ0)RR 6= 0 due to the N exchange.

Srictly speaking, ββ0 is not a measure of light neutrino masses and it will be hard to
disentangle the origin of the see-saw through this process. In particular, we would need
to know whether it is due to exchange of ν’s or heavy particles needed to complete the
SM in order to have mν 6= 0 (such as NR).

It is thus crucial to have a direct measure of lepton number violation which can
probe the source of neutrino Majorana mass. This is provided by the same sign dilepton
production at colliders as we discuss below.

7.2. Lepton number violation at colliders. – We have just seen that ββ0 is obscured
by various contributions which are not easy to disentangle. We need some direct tests of
the origin of ∆L = 2, i.e. these-saw mechanism. This comes about from possible direct
production of the right-handed neutrinos through a WR production. The crucial point
here is the Majorana nature of N : once produced at decays equally often into leptons
and antileptons. This led us (Keung, G.S.) to suggest a direct production of the same
sign dileptons at colliders as a manifestation of ∆L = 2. The most promising channel is
``+2 jets as seen form Fig.5.

One can also imagine a production of N through its couplings to WL (proportional
to yD), but this is a long shot. It would require large yD and large cancellations among
the in order to have small mν . This could be achieved in principle by fine-tuning, but is
not the see-saw mechanism.

The crucial characteristics

1. no missing energy which helps to fight the background

2. by measuring energies and momenta of the final states one can reconstruct both
the mas of Wr and of the right-handed neutrino

3. the process can be amplified by the WR resonance
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Fig. 5. – Production of lepton number violating same sign dileptons at colliders through WR

and N

The main background comes from bb̄+ jets, but can be fought against with the usual
cuts of large pt for leptons and jets. Also important is tt̄+ jets, which is less present
but more resistent to arge pT cuts. Careful and complete studies were performed with
encouraging results: one can easily discover WR at the LHC up to MWR

' 3 − 4 TeV
and mN ' 100 GeV -TeV.

In the L-R symmetric theories one also predicts type II see-saw as discussed before.
Type II can also exist by itself in which case it can lead to rather interesting signatures
at the colliders if the scale of SU(2)L triplet ∆ is light enough. In particular, it can lead
to the production of doubly charged scalars that decay into same sign di-lepton pairs as
in Fig.6.

Fig. 6. – Production of a pair of double charged Higgs scalars and subsequent decay into pairs
of same sign dileptons

Notice that ∆++ and ∆−− decay through the Yukawas y∆, these decays thus probe
the neutrino mass matrix

(150) Mν = y∆〈∆〉

One can derive the sum rules for the flavor structure of Fig.6. Of course, this is valid
only when these decays dominate over the decays with W bosons through〈∆〉.
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The relative strength of ∆−− → `` and ∆−− →W−W− depends on y∆. From

(151) Γ(∆−− → ``) ' y2
∆

8π
M∆

and

(152) Γ(∆−− →W−W−) ' g2〈∆〉2

8πM∆

for M∆ �MW one gets

(153) B(∆−− → ``) ≡ Γ(∆−− → ``)
Γ(∆−− →W−W−)

' y2
∆M

2
∆

g2〈∆〉2

Thus B(∆−− → ``) ≥ 1 requires that the vev of ∆ be as small and y∆ large. Ideally,
observing both decays would establish SU(2) gauge triplet property of ∆ and could
measure the form of the neutrino mass matrix. The widely separated di-lepton pairs
in the case of B(∆−− → ``) ≥ 1 provide a clean manifestation of the Type II see-saw
mechanism and allow for the discovery of ∆++ with M∆ ≤ 800GeV.

In short, both type I and II could lead to exciting ∆L = 2 signatures at LHC, if WR

and N and/or ∆ are light enough. But, as will be discussed later, in predictive grand
unified theories such as minimal SO(10), they are expected to be rather heavy, out of
reach for LHC.

One can ask the same question in the case of Type III see-saw. As we said, one would
need at least the fermionic triplets in order to have at least two massive neutrinos, one
could have a hybrid situation of of Type I and Type III see-saw,with a heavy fermionic
singlet (N) and triplet (T ). This case is particularly interesting, since it emerges naturally
in the SU(5) grand unified theory. Again, the process of interest for LHC is a production
of same sign dileptons (but now with 4 jets) as in Fig.7

Fig. 7. – The same sign dilepton signature of type III seesaw through the production of the
charged and neutral components of a fermion triplet TF



Theory of neutrino masses and mixings 45

The main point here is that in the minimal SU(5) theory augmented by an adjoint
fermionic representation 24F the fermion triplet TF is predicted to lie below TeV , and
thus the above process is a realistic possibility at colliders such as LHC.

8. – Summary and outlook

The smallness of neutrino mass is an intriguing fact that gives hope of being a window
into a new physics beyond the standard model. This crucially depends on the nature of
neutrino mass, i.e. whether it is Dirac or Majorana. In the former case, the standard
model is a complete theory and although the smallness of neutrino mass is attributed to
the smallness of Dirac Yukawa couplings. True, it is not explained, but strictly speaking
there may be no new physics, the same way that there may be no new physics behind
the smallness of electron mass. In the limit of small Yukawas one has more symmetry,
and thus small Yukawas are technically natural, protected from high energy physics. The
Dirac case thus gives no clue where to look for a new physics. Of course, one can always
search for horizontal symmetries as the explanation of small Yukawas, but here there is
a danger of only changing the language.

The Majorana case on the other hand provides a clear window into new physics for
the MSM with Majorana neutrino mass is not a complete theory. At the same time,
this case implies a violation of lepton number through a neutrino-less double beta decay
as is well known and the possible production of the same sign di-leptons, less known
but becoming a new hot field in itself. The completion of the MSM that produces
small neutrino Majorana mass results in the celebrated seesaw mechanism which comes
in three different varieties. In order to be predictive, though, the seesaw mechanism
needs a theory behind, for otherwise it is simply a linguistic variation on the effective
d=5 operator that we saw necessarily describes neutrino mass after the new states are
integrated out. One important theory which leads to both type I and II seesaw is based on
L-R symmetry, and has been a principle source of neutrino mass and seesaw. If the scale
of L-R symmetry breaking were to be in the TeV region, one would have a possibility
of seeing both the parity restoration and the origin of the neutrino mass through the
production of a right handed charged boson and right-handed neutrinos. Similarly, one
could in principle produce the scalar triplet responsible for the type II seesaw. The scale
of L-R breaking can be predicted only in grand unification and in simple, predictive
models it is quite large, far above the TeV scale of colliders. Still, one may be able to
connect the values of neutrino masses and mixings with the predictions for the branching
ratios of proton decay an thus have a check on the theory, albeit indirect.

On the other hand, the type III seesaw finds its natural realization in SU(5) grand
unified theory, when the minimal model od Georgi and Glashow is augmented by an
adjoint fermion representation. This allows for the unification of gauge couplings and
provides a hybrid type I and III seesaw. One predicts one massless neutrino and more
important a light weak triplet fermion, with a mass below TeV. The decays of the triplet
probe neutrino masses and mixings through the lepton number violating production of
same sign dileptons accompanied by four jets. The hope of finding the origin of neutrino
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mass becomes feasible at colliders such as LHC.
In summary, I tried to argue in these lectures in favor of Majorana masses of neu-

trinos, and the possibility of seeing its origin through lepton number violation or the
connection with proton decays. The lepton number violation will be searched for in the
new generation of neutrino-less double beta decay and at LHC. Hopefully, a serious effort
will be put in the next generation of proton decay experiments; they could be simulta-
neously a probe of baryon number violation in nature and an origin of neutrino masses
and mixings.

Appendix A.

Dirac and Majorana masses

The irreducible spin 1/2 representations of the Lorentz group are the two-component
left- and right-handed chiral fermion Weyl fields uL and uR, which transform under the
Lorentz group as

(A.1) uL,R → ΛL,R uL,R

with

ΛL ≡ ei~σ/2(~θ+i~φ

ΛR ≡ ei~σ/2(~θ−i~φ(A.2)

The three Euler angles ~θ stand for rotations, ad ~φ denotes the boosts. The spinors ψL
and ψR transform the same under the rotations, but in an opposite manner under the
boosts.

It is straightforward to show that the following bilinear combinations are Lorentz
invariant

(M) uTLiσ2uL and uTRiσ2uR (Majorana type)

(D) u†LuR and u†RuL (Dirac type)(A.3)

Historically, the Dirac type came first, but in a sense the Majorana invariant is even
more fundamental for it needs only one species of fermions.

To bridge the gap with Dirac four-component fermions, we need the Dirac algebra

(A.4) {γµ, γν} = 2gµν gµν = diag(1,−1,−1,−1)

with

(A.5) γi =
(

0 σi

−σi 0

)
, γ0 =

(
0 12

12 0

)

(A.6) γ5 = iγ1γ2γ3γ0 =
(

12 0
0 −12

)
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and the projectors

(A.7) PL.R ≡
1± γ5

2

The Dirac charge conjugation, defined through

(A.8) CT γµC = −γTµ , CT = −C

is with my conventions

(A.9) C = iγ2γ0

In other words, the Majorana mass term can be written as

(A.10) (M) mM (ψTLCψL + h.c.)

and the Dirac one as

(A.11) (D) mD(ψ̄LψR + ψ̄RψL) ≡ mDψ̄ψ ψ ≡ ψL + ψR

It is convenient to work with left-handed antiparticles instead of right-handed particles

(A.12) (ψC)L ≡ Cψ̄TR

in which case one can write a mass matrix for ψL and (ψC)L in he Majorana notation
(ψT1 Cψ2)

(A.13)
(
mL mD

mD mR

)
where mL and mR are the Majorana mass terms of ψL and ψR respectively. The case of
a pure Dirac fermion simply means mL = mR = 0.

If neutrino mass is of the Majorana type on the other hand, it will imply a violation
of the lepton number and a new rich physics associated with it.

Appendix B.

Majorana spinors: Feynman rules

Take a two-component spinor with left-handed chirality ψL with the following La-
grangian

(B.1) LM = iψ̄Lγ
µ∂µΨL −

(mM

2
ψTLCψL + h.c.

)



48 G. Senjanović

where the subscript M indicates the Majorana nature of the mass term. In order to
bridge the gap with the familiar 4-component Dirac case, introduce by analogy

(B.2) ψM ≡ ψL + Cψ̄TL

From

(B.3) ψ̄Mγ
µ∂µψM = 2ψ̄Lγµ∂µψL

and

(B.4) ψ̄MψM = ψTLCψL + h.c.

we get

(B.5) LM =
1
2
[
iψ̄Mγ

µ∂µ −mM ψ̄MψM
]

Two important facts emerge

1. mM is the (Majorana) mass of ψM

2. one can use the usual Dirac case Feynman rules

Appendix C.

SU(N) group theory

On a fundamental N-dimensional complex representation Φ, the SU(N) group acts
as

(C.1) Φ→ UΦ, U†U = 1, det(U) = 1

and U can be written as

(C.2) U = e−iθaTa a = 1..N2 − 1

where the group generators Ta satisfy

(C.3) Ta = T †a , T r(Ta) = 0, [Ta, Tb] = ifabcTc

where fabc are the group structure constants. There is also a complex conjugate repre-
sentation

(C.4) Φ∗ → U∗Φ∗

and an (N2 − 1)-dimensional adjoint representation

(C.5) A→ UAU† = A− iθa[Ta, A] + ...
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In other words, the generators act on A as commutators. One can write A = AaTa, so
that Aa transforms under a small group rotation as

(C.6) Aa → Aa + fabcθbAc

Examples of fields transforming as the adjoint representation are the gauge bosons A
of SU(N) and the heavy scalars Σ employed to break the grand unified symmetry. The
reason for the latter is the fact that under a unitary transformation 〈Σ〉 → U〈Σ〉U†, one
can have 〈Σ〉 diagonal, which in turn implies

(C.7) [〈Σ〉, Ta ∈ Cartan] = 0

The adjoint Higgs preserves the rank of the group after the symmetry breaking. This is
specially important in SU(5) since it has the same rank (=4) as the SM gauge group.

All other representations are built out of the fundamental Φ (and/or Φ∗) by sym-
metrizing and antisymmetrizing (and subtracting the trace when necessary). For exam-
ple

ΦiΦj = Φ[i,j]+ Φ{i,j}(C.8)

N(N−1)
2

N(N + 1)
2

(C.9)

This means that all the charges get summed up

(C.10) Q(ΦiΦj) = Q(Φi) +Q(Φj)

Appendix D.

SO(2N) group theory

SO(2N) is the group of real orthogonal transformations, OTO = OOT = 1, with
det(O) = 1. It can be generated by N(N − 1)/2 Hermitean antisymmetric matrices

(D.1) O = e−iθijLij

with

(D.2) (Lij)kl = −i(δikδjl − δilδjk)

so that one has the following commutation relations

(D.3) [Lij , Lkl] = i(δikLjl − δjlLik)

The N-dimensional Cartan subalgebra is spanned by

(D.4) Cartan = {L12, L34, ..., L2N−1,2N}

whose eigenvalues are ±1. The fundamental (vector) representation transforms as
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(D.5) Φi → OijΦj

and is generated by Lij in D.2. One can construct the general N-index irreducible
representation by antisymmetrizing or symmetrizing (and subtracting traces) N times
the vector representation. Rather interesting are the [N]- index antisymmetric ones, for
one can complexify them by introducing

(D.6) Φ±[a1..aN ] = Φ[a1..aN ] ±
iN

N !
εa1...aNb1...bN

Φb1...bN

We illustrate this on a simple example below in SO(2) where this amounts to just com-
plexifying a fundamental representation. It turns out that such 5 index antisymmetric
126 dimensional representation of SO(10) plays a profound role in a physics of neutrino
mass; this is discussed in the section 6.

D.0.1. SO(2N): spinors. By analogy with the Dirac algebra in Minkowski space, an
Euclidean version is based on the Clifford algebra of the Γi matrices (i = 1...2N)

(D.7) {Γi,Γj} = 2δij

out of which one can construct N(N − 1)/2 generators

(D.8) Σij =
1
4i

[Γi,Γj ]

which satisfy the usual commutation relations of the SO(2N) generators in D.3. It is
easy to see that the Cartan subalgebra consists of N generators

(D.9) Cartan = {Σ12, ...,Σ2N−1,2N}

whose eigenvalues are ±1/2.
The appropriate 2N -dimensional complex representation Ψ is called a spinor of SO(2N).

Adding a spinor changes of course a group, just as SO(3) becomes SU(2). One often calls
SO(10) with spinors Spin(2N). The spinors transforms in the following manner

(D.10) Ψ→ e−iθijΣij Ψ

Again, by analogy with Dirac γ5 matrix one can introduce

(D.11) ΓFIVE = (−1)NΓ1...Γ2N

with the properties

(D.12) Γ2
FIVE = 1, [ΓFIVE,Σij ] = 0, {ΓFIVE,Γi} = 0
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By using the projectors

(D.13) Γ+(−) ≡
1± ΓFIVE

2

one can construct the irreducible 2N−1 dimensional spinors

(D.14) Ψ± ≡ Γ+(−)Ψ

by analogy with Weyl spinors of the Lorentz group.
One can also introduce the analogue of the usual charge conjugation by demanding

that

(D.15) ΨTBΨ = invariant⇔ Ψc ≡ BΨ∗

which amounts to

(D.16) ΣTB +BΣ = 0

There are two possible solutions for B

(D.17) B(1) = Γ1...Γ2N−1 , ;B(2) = Γ2...Γ2N

D.0.2. The ket notation for spinors. From

(D.18) ΓFIVE = 2Σ12..2Σ2N+1,2N

one can write

(D.19) ΓFIVE = ε1ε2...εN

where εi are ±1 , the eigenvalues of Σ2i−1,2i. Then one can denote the Ψ+ spinors as a
ket

(D.20) Ψ+ ≡ |ε1...εN 〉

For example, take the spinors Ψ+ of SO(10)

(D.21) Ψ+ ≡ |ε1...ε5〉; ε1..ε5 = +1

The 16-component Ψ+ can be decomposed as
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(D.22) Ψ+ =



1 field |+ + + ++〉

10 fields
|+ + +−−〉, |+ +−+−〉, |+ +−−+〉
|+−+ +−〉, |+−+−+〉, |+−−++〉
| −+ + +−〉, | −+ +−+〉, | −+−++〉, | − −+ ++〉

5 fields
|+−−−−〉, | −+−−−〉
| − −+−〉, | − − −+−〉, | − − −−+〉

We will see that this can be interpreted as a decomposition under SU(5)

(D.23) 16 = 10 + 5 + 1

n other words, a family of fermions augmented by a right-handed neutrino makes and
irreducible spinorial representation of SO(10). The unification of matter, on top of gauge
interactions, points strongly towards SO(10). However, in order to appreciate this fact
and have fun with SO(10), we first go through some pedagogical exposition of smaller
groups.

D.0.3. SO(2): a prototype for SO(4n+ 2). We choose

(D.24) Γ1 = σ1, Γ2 = σ2

so that

(D.25) ΓFIVE = σ3 Σ12 =
σ3

2

which illustrates clearly [ΓFIVE,Σi,j ] = 0. The irreducible 1-component spinors transform
as

(D.26) Ψ+ → e−iθ/2Ψ+ , Ψ− → e+iθ/2Ψ−

since

(D.27) Ψ ≡
(

Ψ+

Ψ−

)
→ e−iθσ3/2

(
Ψ+

Ψ−

)
On the other hand, the two-component vectors transform as

(D.28)
(
φ1

φ2

)
→
(

cos θ sin θ
− sin θ cos θ

) (
φ1

φ2

)
or

(D.29) φ1 ± iφ2 → e±iθ(φ1 ± iφ2)
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Eqs. D.26 and D.29 simply account for the fact SO(2) ' U(1).
The internal “charge” conjugation B can be chosen as B1 = σ1, so that

(D.30) ΨTBΨ = Ψ+Ψ−

However, only Ψ+ (or Ψ−) is an irreducible spinor, therefore there is no mass term for
an irreducible spinor of SO(2). In other words, the spinors Ψ+ ( Ψ−) are chiral and can
represent physical particles such as the fermions of the SM. This is true in any SO(4n+2)
theory. In particular, in SO(10), which means that it offers hope of being realistic.

Dual representation. From

(D.31) εijdetO = OikOjlεkl

is is easy to see that φi and εijφi transform in the same way. We can introduce the self
(anti-self) dual representation

(D.32) Φi(±) =
1√
2

(φi ± iεijφj)

which is nothing else but the complex representation of U(1) D.29. This should make
clear the generic concept of self dual representations in SO(2N) discussed before.

Yukawa couplings. We have seen that there is no direct mass term. There are Yukawa
couplings, though, of the type

LY = ΨTBσiΨφi
= Ψ+Ψ+(φ1 − iφ2) + Ψ−Ψ−(φ1 + iφ2)(D.33)

as dictated by U(1) charges.

D.0.4. SO(4). One knows that SO(4) is isomorphic to SU(2)×SU(2), and it plays an
important role in providing a left-right symmetric subgroup of SO(10). It is an Euclidean
analog of the Lorentz group and the Clifford algebra can be generated by

Γ1 =
(

0 σ1

σ1 0

)
Γ2 =

(
0 σ2

σ2 0

)
Γ3 =

(
0 σ3

σ3 0

)
Γ4 =

(
0 −i
i 0

)
(D.34)

so that

(D.35) ΓFIVE =
(

1 0
0 −1

)
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and “charge” conjugation can be taken as

(D.36) B(1) = Γ1Γ3 =
(
−iσ2 0

0 −iσ2

)
or

(D.37) B(2) = Γ2Γ4 =
(
iσ2 0
0 −iσ2

)
The mass term

(D.38) ΨTBΨ ∝ ΨT
+iσ2Ψ+ + ...

where

(D.39) Ψ± =
1± Γ5

2
Ψ±

In other words, the mass term for Ψ+ (or Ψ−) is invariant, which means that we can
have no chiral fermions in SO(4). This is true for all SO(4n) groups.

In the ket notation

(D.40) Ψ+ = |ε1ε2〉; ε1ε2 = 1; ε1,2 = ±1

or

(D.41) Ψ+ =
(
|+ +〉
| − −〉

)
Introduce the neutral generator of SU(2)L and SU(2)R

(D.42) T3L ≡
1
2

(Σ12 + Σ34) , T3R ≡
1
2

(Σ12 − Σ34)

and you see that Ψ+ is an SU(2)L doublet, SU(2)R singlet field, an analog of left-handed
Weyl spinors of the Lorentz group. Similarly, Ψ− is an SU(2)L singlet, SU(2)R doublet
field.

D.0.5. SO(6). SO(6) ∼ SU(4)C is the Pati-Salam group of quark-lepton symmetry,
with leptons as the fourth color. It deserves a brief description.

Start with a six-dimensional vector Φi (i=1..6). It is easy to see that the components
(φ1 ± φ2), (φ3 ± φ4), (φ5 ± φ6) transform as 3 and 3∗ of its subgroup SU(3) which we
identify with the color.

The neutral generators are identified as

T3C =
1
2

(Σ12 − Σ34)

T8C =
1
2

(Σ12 + Σ34 − 2Σ56)(D.43)
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The additional neutral generator of SU(4), identifiable as B − L, can be written as

(D.44) B − L = −2
3

(Σ12 + Σ34 + Σ56)

Regarding spinors, the positive chirality can be written as

(D.45) Ψ+ =


color singlet |+ ++〉

color triplet (B− L) = 1/3 |+−−〉, | −+−〉, | − −+〉

It says simply that the irreducible 4-component spinor of SO(6) is a fundamental of
SU(4) with the decomposition under SU(3)C (with B − L)

(D.46) Ψ+ = 4 = 1−1 + 31/3

which is precisely a combination of a lepton and a colored quark. Similarly, Ψi = 4∗ =
1+1 + 3−1/3 stands for an antilepton and antiquark.

Exercise:
As a check, show that 4× 4 = 6 + 10. Show that 6 of SO(6) has the quantum number

of the 6 (antisymmetric) of SU(4).

Yukawa couplings in SO(6). We know that the irreducible spinors of SO(6) are funda-
mental representations of SU(4) and 4×4 = 6+10. There are then two types of Yukawa
couplings

(D.47) LY = y6ΨTBΓiΨΦi + y10ΨTBΓiΓjΓkΨΦ−[ijk]

where it is a simple exercise to show that Φ−[ijk]is an anti-self-dual representation

(D.48) Φ−ijk = Φ−[ijk] =
i

3!
εijklmnΦ[lmn]

and where Φ−[ijk] is the 3-index antisymmetric tensor of SO(6).

Exercise: Construct the self-dual and anti-self-dual representation of SO(6) out of
the 3-index antisymmetric representation Φ[ijk]. Show that 20 = 10 + 10. Then prove
equation D.47 and show that there are no other couplings

Exercise: Take the Pati-Salam group SO(4)×SO(6) ' SU(2)L×SU(2)R×SU(4)c.
Show that the representations (2, 1, 4) and (1, 2, 4) give a family of quarks and leptons
augmented by a right-handed neutrino
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Exercise: The chiral anomalies are proportional to Λijk = Tr({Ti, Tj}Tk). Show that
the SO(2N) groups are anomaly free, except for the SO(6). Comment on why SO(6)
must have an anomaly
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[35] J. R. Ellis and M. K. Gaillard, Phys. Lett. B 88 (1979) 315.
[36] B. Bajc, M. Nemevsek and G. Senjanovic, arXiv:hep-ph/0703080.
[37] S. Dimopoulos, S. Raby and F. Wilczek, Phys. Rev. D 24 (1981) 1681.
[38] L. E. Ibanez and G. G. Ross, Phys. Lett. B 105 (1981) 439.
[39] M. B. Einhorn and D. R. T. Jones, Nucl. Phys. B 196 (1982) 475.
[40] W. J. Marciano and G. Senjanović, Phys. Rev. D 25 (1982) 3092.
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