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What is it? 

• Holonomic QC is encoded in an n-fold degenerate 
Hilbert space of H� with control parameters �. 
 

• Cyclic change of these parameters around a loop C 
during time T such that �in= �out. �  
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Motivation I 

  
 

      



ˆ
,̂ exp

2

n
U n i

do any desired single-qubit operation 

by a time-dependent electric quadrupole field 
acting on a heavy hole spin qubit 



Motivation II 
do holonomic quantum computation 
on the basis of solid state spin qubits 

San-Jose, Scharfenberger, Schön, Shnirman, Zarand PRB 2008 

Golovach, Borhani, Loss PRA 2010 



Simpler setup 



Simpler setup 

Not even all gates have to work. Four of them can be broken! 



Outline 
• Kato’s connection �  non-Abelian 

geometric phase 
 

• Qubit control via quadrupole fields 
 

• Estimation of experimental 
parameters 

 



Adiabatic time evolution 
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time-dependent Schrödinger equation 

• This equation has in general no stationary solution. 
 

• Adiabatic theorem: If the change of Ht is made 
infinitely slow, the system, when started from a 
stationary state of H0, passes through the 
corresponding stationary states of Ht for all times t. 



Kato’s connection 
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unitary transformation 
on the degenerate subspace 

of EV with EW E0 
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Kato‘s connection 

time-dependent projector 
on the degenerate subspace 

Kato JPSJ 1950; Wilczek & Zee PRL 1984 



Geometric interpretation 

time-dependent SG:     0
t t t

d iH

�  adiabatic equation for 
Kato‘s connection:      0

t
d A t

Kato JPSJ 1950 

 0 since 0PA PPP �   0Pd

no in-plane change 
in the degenerate subspace of EV   



Relation to parallel transport 
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covariant derivative 

Parallel transport: 

 


0X
Parallel transport of a vector 

around a closed loop on the sphere 



Kato vs. Berry 
• Kato‘s connection allows us to derive the correct final state after an 

adiabatic time evolution on the basis of a given degenerate subspace of 
initial states. 
 

• Kato‘s connection is basis-independent. 
 

• Berry‘s phase is derived for a given set of (instantaneous) eigenstates 
and eigenvalues of Ht. 
 

• The Abelian Berry‘s phase of a closed loop in parameter space is 
gauge-independent. 
 

• The non-Abelian Berry‘s phase of a closed loop in parameter space 
depends on the choice of basis at the initial and final point. 

 



Outline 
• Kato’s connection �  non-Abelian 

geometric phase 
 

• Qubit control via quadrupole fields 
 

• Estimation of experimental 
parameters 

 



Schedule of this part 

• Symmetry of a general quadrupole 
Hamiltonian. 
 

• Derivation of the adiabatic time evolution 
of an initial HH eigenstate. 
 

• Identification of single-qubit operation by 
time-dependent electric quadrupole field. 



Quadrupole coupling 
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Hamiltonian of a spin-3/2 particle coupled 
to an electric quadrupole field: 

angular momentum 
operator 

quadrupole tensor 
of the applied field 

Q: real, symmetric, traceless matrix with basis {Q�}� 



Quadrupole Hamiltonian 

     
     ij

i j
H Q H x Q x J Q J x

where the basis Hamiltonians �� obey the 
SO(5) Clifford algebra: 

     , 2



Basis Hamiltonians 
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with orthogonal basis:  



Symmetry of H(Q) 
• All possible H(Q) are unitarily related by a 

Spin(5) rotation. 
 

• The ten generators of the corresponding 
SO(5) symmetry group are: 
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Next step: use the generators to describe a cyclic time evolution 
(That is the big advantage of spin 3/2 qubits!) 



Cyclic time evolution of H(Q) 

Starting point:    
0

0H t

Cyclic time evolution is given by a 2� SO(5) 
rotation on the space of quadrupole fields: 
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ten-component unit vector 
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Our choice of H(t=0) 
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Jz good quantum number �  easy initialization 



Initialization: HH eigenstate 
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Projector on HH and  
LH subspaces: 



Adiabatic time evolution I 
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time-dependent projector  
on HH subspace 
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How can we prove this? 
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Adiabatic time evolution II 
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Take the advantage 

of the SO(5) rotation: 
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Relation to single qubit operation 
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Pauli matrices on HH subspace 
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four relevant generators: 
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Translation into t-dependent 
quadrupole field 
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SO(5) generators in the representation 
acting on the five-component vector x 

� time-dependent quadrupole field 
associated with the loop in direction a 
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Example 
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rotation 
from z to x 

(only 10 of 
18 gates needed) 



Outline 
• Kato’s connection �  non-Abelian 

geometric phase 
 

• Qubit control via quadrupole fields 
 

• Estimation of experimental 
parameters 

 



Schedule of this part 

• Up to now: �E = |x| has been treated as a 
free parameter. 
 

• We want to estimate the quadrupole 
induced splitting for GaAs quantum dots. 
 

• Strain will become important to reduce 
confinement-induced HH-LH splitting. 



Competing energy scales 
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HH-LH splitting due to parabolic 
confinement potential 

Hamiltonian due to 
quadrupole potential 
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�  spectrum: 



Quantum dot model 
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envelope functions of 
lowest LH and HH subbands 

Luttinger Hamiltonian for �8 bands 
including strain corrections 
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+ in-plane confinement potential 

� reduces the symmetry 
� HH-LH splitting �E0 



Luttinger Hamiltonian 
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corrections: 
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HH-LH splitting �E0 

  1kbarpressure o 2.61f  V  meQEstimation: 



Quadrupole-induced splitting 
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quadrupole potential: 

associated with the quadrupole tensor 
of four Coulomb charges �q at 

equal radius R in the (x,y) plane: 
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Our estimation: 



How fast am I allowed to 
operate the device? 

   0.57 meV 6.6 K 0.87 THz
Q

E

Manipulations need to be done below 
this frequency – because of the 
adiabatic approximation –  but still 
faster than typical dephasing times. 
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de Greve, …, Yamamoto Nature Phys. 2011 



Summary 
• 14 out of 18 gates needed to 

perform an arbitrary SU(2) 
transformation 
 

• Strain-engineering important 
in GaAs QDs 
 

• Explore the third dimension 
of QD control 

Budich, Rothe, Hankiewicz & Trauzettel PRB 85, 205425 (2012) 



Advantage of our proposal 
• Adiabatic manipulation of 4 dimensional Hilbert 

space (HH+LH+both spin directions). 
 

• In principle, the same manipulation on the HH 
and LH subspace is possible. 
 

• This is not the case in a previous proposal based 
on the electric Stark effect, where the resulting 
holonomy on the HH subspace is Abelian and 
only the one on the LH subspace is non-Abelian. 
 Bernevig & Zhang PRB 2005 
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