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Please ask questions 



The Horizon Problem
Why is the CMB so uniform?



Let’s talk about the history of the universe ...

... we will do it in conformal time
physical time

scale factor

comoving coordinate

Light has travelled a finite distance since the Big Bang:

light travels at 45 degrees

comoving Hubble radius

for a fluid(aH)−1 ∝ a
1
2 (1+3w)



Two points have never been in causal contact 
if their past light cones don’t intersect: 

comoving horizon

Ordinary matter satisfies the SEC:

for a fluid

The comoving Hubble radius grows and the comoving 
horizon gets its largest contribution from late times :

e.g. recombination
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In the standard Big Bang cosmology we therefore have:

Exercise: Show that two points in the CMB 
have never been in causal contact if θ � 2◦



Inflation
A Shrinking Hubble Sphere



Maybe the early universe was not filled with ordinary matter ?

We need something that leads to a 
shrinking Hubble sphere

The comoving horizon then gets its largest contribution from early times :

There was more time between the singularity 
and recombination than we had thought! 

for a fluid



1000 10 3 1 0 1 1000

0.2

0.4

0.6
0.8
1.0

0.01

0.1

0.001

Hu
bb

le 
sp

he
re

now

ligh
t c

one

sc
al

e 
fa

ct
or

Co
m

ov
in

g 
Ti

m
e 

[G
yr

]
50

40

30

20

10

3 10

CMB
reheating

-10

-20

-30

-40

in
fla

tio
n

causal contact



1000 10 3 1 0 1 1000

0.2

0.4

0.6
0.8
1.0

0.01

0.1

0.001

Hu
bb

le 
sp

he
re

now

ligh
t c

one

sc
al

e 
fa

ct
or

Co
m

ov
in

g 
Ti

m
e 

[G
yr

]
50

40

30

20

10

3 10

CMB
reheating

-10

-20

-30

-40

in
fla

tio
n

causal contact

(aH)−1



today

observable universe

A

A

CMB
time

comoving 
scales

reheating

conventional Big Banginflation

* sorry, from now on time flows horizontal

B

B

C

C

(aH)−1
D

D



SEC acceleration

Show that the following are equivalent definitions of inflation:Exercise:



To solve the horizon problem requires at 
least 60 e-foldings of inflationary expansion:

We don’t just require that inflation occurs ...

... but also that inflation lasts

1)

2)

reheating today

observable universe

start of inflation



Slow-Roll Inflation
What microphysics leads to ?



Consider a scalar field minimally coupled to gravity

In a flat FRW background, we have:

Friedmann

Klein-Gordon

Continuity

slow-roll

Scalar Field Dynamics



Friedmann

Klein-Gordon

Slow-Roll Approximation

Exercise: Show that

potential slow-roll 
parameters

Hubble slow-roll 
parameters

allow us to evaluate the prospect of inflation 
purely from the shape of the potential 



(a) (b)

(d)(c)

Slow-Roll Examples



The Eta Problem

The eta parameter can be written as a ratio 
of the inflaton mass and the Hubble scale:

Achieving and stabilizing this mass hierarchy is one 
of the main challenges for models of inflation. 

We will come back to this ...

η = M
2
pl
V

��

V
=

1

3

m
2
φ

H2
< 1



Primordial Perturbations



...  we need a source for the 
anisotropies of the CMB:

So far, we have explained why the universe is homogeneous, isotropic and flat.

If this were the end of the story it would be a disaster ...

Remarkably, inflation automatically contains a 
mechanism to produce primordial fluctuations:

Quantum Mechanics



Quantum Fluctuations



clock

quantum fluctuations

... which become the 
CMB anisotropies.

vacuum fluctuations 
spread the inflaton vev ...

The quantum origin of density perturbations is quite intuitive: 

... which induces a local time 
delay for the end of inflation

... which translates into density 
fluctuations after inflation



On the Back of an Envelope
The vacuum fluctuations can be estimated on the back of an envelope.

Hollands and Wald

This ignores metric fluctuations. I will fix this later.

Linearized inflaton fluctuations satisfy an harmonic oscillator equation: 

spring ‘constant’frictionmass =1

• inside the horizon:

• outside the horizon:

friction negligible

friction dominates
freeze-out at

*

*

This comes from the following action: 



On the Back of an Envelope
The vacuum fluctuations can be estimated on the back of an envelope.

Hollands and Wald

The zero-point fluctuations of the quantum oscillator are

cf. Wikipedia

This holds as long as the mode evolves adiabatically (inside the horizon).

Fluctuations freeze in at horizon crossing:

scale-invariance

de Sitter fluctuations



Of course, we don’t do precision cosmology on the back of an envelope.

Let’s get the same answer a bit more formally.
(Warning: This will be a bit technical, but everybody should have seen this once!)



Canonical Quantization

We first write the action in terms of conformal time ...

... and canonically normalize the field

We arrive at the action for a harmonic oscillator 
in Minkowski space with time-dependent mass:

(captures the expansion of the universe)



The associated equation of motion is the Mukhanov-Sasaki equation:

Canonical Quantization

In the subhorizon limit, the mass is negligible and the mode oscillates:

In the superhorizon limit, gradients are negligible and the mode freezes: *

The general solution can be written as:
initial condition

mode function:



We have arrived at the following mode expansion:

So far, this is still classical.

... and impose the canonical commutation relation:

Canonical Quantization

and

To make it quantum, we promote fields to operators ...



Exercise:

Canonical Quantization

By substituting

Show that the commutation relation becomes

where

(Wronskian)

We use our freedom to normalize the mode functions to set

The commutation relation then becomes that of the creation and annihilation 
operators of a harmonic oscillator

annihilation creation

The vacuum state is defined in the standard way:

However, at this point neither nor are uniquely defined, 
since they depend on the form of which hasn’t been fixed.



Let’s be concrete and solve the theory in de Sitter space:

Canonical Quantization

How do we choose the “correct vacuum”?

The Mukhanov-Sasaki equation becomes

v��k +

�
k2 − 2

τ2

�
vk = 0

Exercise:  Show that this is solved by

Different choices of correspond to different vacuum states.

a(τ) = − 1

Hτ



Key insight: At early times, all modes of interest 
were deep inside the horizon ...

... and the mode equation is that of 
a massless field in Minkowski

Canonical Quantization

Therefore, we choose the de Sitter mode function 
such that at early times it matches Minkowski:

Bunch-Davies mode function

The minimum energy mode 
function in Minkowski is: Exercise: Prove this.vk(τ) =

1√
2k

e−ikτ



Vacuum Fluctuations

We can now compute the vacuum expectation values of fluctuations:

Mean:

Variance:

The power spectrum is the square of the mode function:

superhorizon limit
The power spectrum of inflaton fluctuations is:



Curvature Perturbations



We will fix this now.

Einstein

(Warning: This will be a bit tedious, but everybody should have seen this once!)

Deficiencies of the treatment so far:

It is inconsistent to ignore metric fluctuations:

Inflaton fluctuations are not observables.



Arnowitt, Deser and Misner [gr-qc/0405109]

Metric Perturbations

We will treat metric perturbations in the ADM formalism:

shiftlapse

trace traceless

3+1



5 2- 2
constraints

- = 1
physical d.o.f.gauge

1 time:

1 space:

scalar modes

4 metric:

1 matter:



(comoving gauge)1.

Gauge Fixing

Using a time shift, we can remove any fluctuations in the scalar field:

A spatial shift, sets the traceless part of the metric to zero:

2.

The trace of the metric contains the comoving curvature perturbation:

It measures the intrinsic 
curvature of the spatial slice.



time

comoving 
scales

reheating today

sub-horizon super-horizon

CMB

transfer
function

projection

Weinberg [astro-ph/0302326]

quantum 
fluctuations

The comoving curvature perturbation is conserved on superhorizon scales.

This allows us to be ignorant of the uncertain details of reheating.



Constraint Equations

We still have the lapse and the shift to take care of.
The Einstein equations relate them to the curvature perturbation.

We start with the action:

Mpl ≡ 1with



Constraint Equations

where

Exercise: Show that in ADM:

(extrinsic curvature)

The lapse and the shift are non-dynamical, i.e. they satisfy constraint equations:

substitute:

linearize and solve:



Quadratic Action

plug back into the action:
[integrate by parts and use background e.o.m. ]

This is the same action as before, except for the factor of . 

this is infinite in de Sitter:

Hence,

Trick: use de Sitter mode functions even for 
but evaluate the power spectrum at horizon crossing: 





Time dependence becomes scale dependence:

Exercise:

Scale Dependence

Show that


