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Why Study Nonlinear Optics?

It is good fundamental physics.

It leads to important applications.

It is a lot of fun.

Demonstrate these features with examples in remainder 
of talk.



1. What is Nonlinear Optics?



Nonlinear Optics and Light-by-Light Scattering

The elementary process of light-by-light scattering has never 
been observed in vacuum, but is readily observed using the 
nonlinear response of material systems.

M. A. Kramer, W. R. Tompkin, and R. W. Boyd, Phys. Rev. A, 34, 2026, 1986.
W. R. Tompkin, M. S. Malcuit, and R. W. Boyd, Applied Optics 29, 3921, 1990.

Nonlinear material is fluorescein-doped boric acid glass (FBAG)
n2 �)%$*��Ⱦ���14 n2(silica)   [But very slow response!]







Some Fundamental Nonlinear Optical Processes: I

Second-Harmonic Generation
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Some Fundamental Nonlinear Optical Processes: II

Sum-Frequency Generation
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Some Fundamental Nonlinear Optical Processes: III

Difference-Frequency Generation
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Optical Parametric Oscillation

amplified!



Parametric Downconversion:  A Source of Entangled Photons

The signal and idler photons are entangled in:

 
(a) polarization

 
(b) time and energy

 
(c) position and transverse momentum

 
(d) angular position and orbital angular momentum

t

t

t

Entanglement is important for:
(a) Fundamental tests of QM (e.g., nonlocality) 
(a) Quantum technologies (e.g., secure communications)



Some Fundamental Nonlinear Optical Processes: III

Third-Harmonic Generation
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Some Fundamental Nonlinear Optical Processes: IV

Intensity-Dependent Index of Refraction
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Role of Material Symmetry in Nonlinear Optics
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r(2) vanishes identically for a material 
     possessing a center of inversion sym-
     metry (a centrosymmetric medium).



2.  Coupled Wave Equations and Harmonic
Generation



Treatment of Second-Harmonic Generation – I
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Let
Ẽ1(z, t) = E1(z)e

�i!t + c.c. = A1e
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i(k2z�2!t) + c.c. (2)

where k1 = n1!/c and k2 = n22!/c.

We have assumed that the pump wave E1 at frequency ! is unde-
pleted by the nonlinear interaction. We take A2 to be a function of z
to allow the second harmonic wave to grow with z. We also set
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The generation of the wave at 2! is governed by the wave equation

r2Ẽ2 �
n2

c2
@2Ẽ2
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Treatment of Second-Harmonic Generation – II

Note that the first term in the wave equation is given by

r2Ẽ2 =

2

666664

@2Ã2
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The second form is the slowly varying amplitude approximation.

Note also that
@2Ã2

@t2
= �(2!)2A2 e
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By combining the above equations, we obtain
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1e
i�k z where �k = 2k1 � k2. (8)

The quantity �k is known as the phase (or wavevector) mismatch
factor, and it is crucially important in determining the e�ciency of
nonlinear optical interactions



Treatment of Second-Harmonic Generation – III

For the case �k = 0, Eq. (8) becomes

2ik2
dA2

dz
=

�4!2

c2
�(2)A2

1 (9)

with solution evaluated at z = L of

A2(L) =
2i!

n2c
�(2)A2

1L or |A2(L)|2 =
4!2

n22c
2[�

(2)]2|A1|4L2. (10)

Note that the SHG intensity scales as the square of the input intensity
and also as the square of the length L of the crystal.

ω2

ω2

dipole emitter phased array of dipoles



Treatment of Second-Harmonic Generation – IV

For the general case of �k 6= 0, Eq. (8) can still be solved to yield

|A2(L)|2 =
4!2

n22c
2 [�(2)]2 |A1|4L2 sinc2(�k L/2) (11)

Note that �k L must be kept much smaller than ⇡ radians in order
for e�cient SHG to occur.



Second Harmonic Generation and Nonlinear Microscopy

Nonlinear Optical Microscopy

An important application of harmonic generation is nonlinear microscopy. . . 

Microscopy based on second-harmonic generation in the configuration of a confocal 
microscope and excited by femtosecond laser pulses was introduced by Curley et al. 
(1992).  Also, harmonic-generation microscopy can be used to form images of transpar-
ent (phase) objects, because the phase matching condition of nonlinear optics depends 
sensitively on the refractive index variation within the sample being imaged (Muller et 
al., 1998).

Boyd, NLO, Subsection 2.7.1

RWB




 

Caution! 

 
Curley et al., not Curly et al. 

 

 

 



How to Achieve Phase Matching: Birefringence Phase Matching

The phase matching condition �k = 0 requires that
n1!1

c

+
n2!2

c

=
n3!1

c

where !1 + !2 = !3

These conditions are incompatible in an isotropic dispersive material.
However, for a birefringent material phase matching can be achieved.
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How to Achieve Phase Matching: Quasi Phase Matching

Λ

single domain crystal periodically poled crystal

Sign of �(2) is periodically inverted to prevent reverse power flow.
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(c)  with a wavevector 
        mismatch

(b)  with quasi-phase-matching





Additional Studies of Wave Propagation Effects



3.  Mechanisms of Optical Nonlinearity



Typical Values of the Nonlinear Refractive Index

n2
a �(3)

1111 Response time
Mechanism (cm2/W) (m2/V2) (sec)

Electronic polarization 10�16 10�22 10�15

Molecular orientation 10�14 10�20 10�12

Electrostriction 10�14 10�20 10�9

Saturated atomic absorption 10�10 10�16 10�8

Thermal e↵ects 10�6 10�12 10�3

Photorefractive e↵ectb (large) (large) (intensity-dependent)

a For linearly polarized light.
b The photorefractive e↵ect often leads to a very strong nonlinear response. This response usually

cannot be described in terms of a �(3) (or an n2) nonlinear susceptibility, because the nonlinear po-

larization does not depend on the applied field strength in the same manner as the other mechanisms

listed.
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Some Actual Z-Scan Data

M. Sheik-Bahae et al., IEEE J. 
Quantum Electron. 26 760 (1990).
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For closed aperture z-scan

ΦNL  = n2 (ω/c) Ι0 L
where



6.  Self-Action Effects in Nonlinear Optics



Self-Action Effects in Nonlinear Optics

Self-action effects:  light beam modifies its own propagation

d





Prediction of Self Trapping 
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radial profile of self
-trapped beam





Optical Solitons

Field distributions that propagate without change of form 

Temporal solitons (nonlinearity balances gvd)

Spatial solitons (nonlinearity balances diffraction)

1973: Hasegawa & Tappert
1980: Mollenauer, Stolen, Gordon

1964: Garmire, Chiao, Townes
1974: Ashkin and Bjorkholm (Na)
1985:  Barthelemy, Froehly (CS2)
1991:  Aitchison et al. (planar glass waveguide
1992:  Segev, (photorefractive)



Solitons and self-focussing in Ti:Sapphire  

Diffraction-management 
controls the spatial self-
focussing 

Dispersion-management 
controls the temporal 
self-focussing  



Beam Breakup by Small-Scale Filamentation

Predicted by Bespalov and Talanov (1966)

Exponential growth of wavefront imperfections by four-wave mixing processes

transverse wavevector, q/qmax
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  Honeycomb Pattern Formation

Output from cell with a single gaussian input beam

Quantum statistics?

Input power 100 to150 mW
Input beam diameter 0.22 mm

Sodium vapor cell  T = 220o C
Wavelength =  588  nm
Bennink et al., PRL 88, 113901 2002.

At medium input power At high input power

at cell exit        in far field at cell exit        in far field
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Optical Radiance Limiter Based on Spatial Coherence Control

Controlled small-scale filamentation used to modify spatial degree of coherence

Alternative to standard appropches to optical power limiting

Schweinsberg et al., Phys. Rev. A 84, 053837 (2011). 20 30

increasing power



4.  Local-Field Effects in Nonlinear Optics



Local Field Effects in Nonlinear Optics – I

Recall the Lorentz-Lorenz Law
(linear optics)

χ(1) =
Nα

1 − 4
3πNα

or
ϵ(1) − 1

ϵ(1) + 2
=

4

3
πNα.

E P
E
loc

This result follows from the assumption that the field that acts on a
representative atom is not the macroscopic Maxwell field but rather
the Lorentz local field given by

Eloc = E + 4
3πP where P = χ(1)E

We can rewrite this result as

Eloc = LE where L =
ϵ(1) + 2

3
is the local field factor.



See, for instance, H. A. Lorentz, Theory of Electrons, Dover, NY (1952).

The Lorentz Red Shift



Maki, Malcuit, Sipe, and Boyd, Phys. Rev. Lett. 68, 972 (1991). 

Observation of the Lorentz Red Shift



Local Field Effects in Nonlinear Optics – II

For the case of nonlinear optics, Bloembergen (1962, 1965) showed
that, for instance,

χ(3)(ω = ω + ω − ω) = Nγ(3)|L(ω)|2[L(ω)]2.

where γ(3) is the second hyperpolarizability and where

L(ω) =
ϵ(ω) + 2

3

For the typical value n = 2, L = 2, and L4 = 16. Local field effects
can be very large in nonlinear optics! But can we tailor them for our
benefit?

We have been developing new photonic materials with enhanced NLO
response by using composite structures that exploit local field effects.



Nanocomposite Materials for Nonlinear Optics
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Local Field Enhancement of the NLO Response
- Under very general conditions, we can express the NL

response as 
eff
(3) = f L2 L 2 (3)

L = + 2
3

 - For a homogeneous material

L = 3 h

m + 2 h

For a spherical particle of dielectric constant      embedded in a host 
of dielectic constant      

m

h

where f is the volume fraction of nonlinear material and L is 
the local-field factor, which is different for each material geometry.

 -  Under appropriate conditions, the product             can exceed unity.        f L2 L 2

- 

For a layered geometry with the electric field perpendicular to the
of the layers, the local field factor for component a is given by

L = eff

a

1
eff

=
fa

a

+
fb

b

- 

plane



Alternating layers of TiO2 and 
the conjugated polymer PBZT.

  

Fischer, Boyd, Gehr, Jenekhe, Osaheni, Sipe, and 
Weller-Brophy, Phys. Rev. Lett. 74, 1871 (1995).

Measure NL phase shift as a 
function of angle of incidence.

A composite material can display a larger NL response than its constituents!

Enhanced NLO Response from Layered Composite Materials

3.2 times enhancement!35% enhancement in r(3)

Diode Laser
(1.37 um)

polarizer

photodiode

gold electrode 

ITO

BaTiO3

1 kHz

lockin amplifier

signal generator

dc voltmeter

glass substrate

AF-30 in
polycarbonate

Quadratic EO effect

Nelson and Boyd, APL 74 2417 (1999)
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� Metals have very large optical nonlinearities but low transmission

� Solution: construct metal-dielectric photonic crystal structure
(linear properties studied earlier by Bloemer and Scalora)

80 nm of copper
T = 0.3%

� Low transmission because metals are highly reflecting (not because they are absorbing!)

Accessing the Optical Nonlinearity of Metals with Metal-Dielectric 
                              Photonic Crystal Structures 

SiO2 PC structure

bulk metal 80 nm of 
copper (total)

T = 10%

h�������nm

I = 500 MW/cm2

M/D PC

bulk Cu 

(response twelve-
times larger)

Bennink, Yoon, Boyd, and Sipe, Opt. 
Lett. 24, 1416 (1999).

Lepeshkin, Schweinsverg, Piredda, Bennink, 
and Boyd, Phys. Rev. Lett. 93, 123902 (2004).





Gold-Doped Glass:  A Maxwell-Garnett Composite

gold volume fraction approximately 10-6

gold particles approximately 10 nm diameter

• Red color is because the material absorbs very strong in the
 blue, at the surface plasmon frequency

• Composite materials can possess properties very different
from those of their constituents.

Developmental Glass, Corning Inc. 

Red Glass Caraffe
Nurenberg, ca. 1700

Huelsmann Museum, Bielefeld
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Counterintuitive Consequence of Local Field Effects

Cancellation of two contributions that have the same sign
Gold nanoparticles in a reverse saturable absorber dye solution (13 μM HITCI)

(3)Im        <  0

(3)Im        >  0

RSA

SA
β < 0

β > 0



Is there an intrinsic nonlinear reponse to surface plasmon polaritons (SPPs)?
��$�QRQOLQDU�UHVSRQVH�ZRXOG�EH�XVHIXO�IRU�SKRWRQLFV�DSSOLFDWLRQV
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NLO in Plasmonics (Photonics Using Metals)
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I. De Leon, Z. Shi, A. Liapis and R.W.Boyd, Optics Letters 39, 2274 (2014)



Slow Light in a Fiber Bragg Grating (FBG) Structure
(Can describe properties of FBGs by means of analytic expressions)
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where the slow-down factor S = ng/n 

Bhat and Sipe showed that the
   nonlinear coeficient is given by



group index 
approximately 140

Improved Slow-Light Fiber Bragg Grating (FBG) Structure
Much larger slow-down factors possible 
with a Gaussian-profile grating

H. Wen, M. Terrel, S. Fan and M. Digonnet,  IEEE Sensors J. 12, 156-163 (2012).

Observation of (thermal)
optical bistability at mW
power levels

J. Upham, I. De Leon, D. Grobnic,  E. Ma,  M.-C. N. Dicaire,  S.A. Schulz,  S. Murugkar,  and R.W. Boyd, 
Optics Letters 39, 849-852 (2014).    



The other Lake Como



5.  Slow and Fast Light



Controlling the Velocity of Light

– Light can be made to go:
  slow:    vg << c   (as much as 106 times slower!)
  fast:      vg > c
  backwards:   vg negative
    Here vg is the group velocity:  vg = c/ng   ng  = n + Ʒ (dn/dƷ)

Review article:  Boyd and GautKier, Science 326, 1074 (2009).

“Slow,” “Fast” and “Backwards” Light

– Velocity controlled by structural or material resonances
absorption

profile

RWB
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Slow and Fast Light Using Isolated Gain or Absorption Resonances
 

ng  = n + Ʒ (dn/dƷ)



Light speed reduction
to 17 metres per second
in an ultracold atomic gas
Lene Vestergaard Hau*², S. E. Harris³, Zachary Dutton*²
& Cyrus H. Behroozi*§

NATURE | VOL 397 | 18 FEBRUARY 1999 |www.nature.com
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* Rowland Institute for Science, 100 Edwin H. Land Boulevard, Cambridge,
Massachusetts 02142, USA
² Department of Physics, § Division of Engineering and Applied Sciences,
Harvard University, Cambridge, Massachusetts 02138, USA
³ Edward L. Ginzton Laboratory, Stanford University, Stanford, California 
94305, USA

Note also related work by Chu, Wong, Welch, Scully, Budker, Ketterle, and many others



Crucial for many real-world applications

We have identified two preferred methods for producing
 slow light

(1)  Slow light via coherent population oscillations (CPO) 

(2)  Slow light via stimulated Brillouin scattering (SBS)  

Goal:  Slow Light in a Room-Temperature

               Solid-State Material



Slow Light by Stimulated Brillouin Scattering (SBS)
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We often think of SBS as a pure gain process, but it also leads to a change in refractive index
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Okawachi, Bigelow, Sharping, Zhu, Schweinsberg, Gauthier, Boyd, and Gaeta Phys. Rev. Lett. 94, 153902 (2005).  
Related results reported by Song, González Herráez and Thévenaz, Optics Express 13, 83 (2005).



Slow Light via Coherent Population Oscillations

PRL 90,113903(2003); Science, 301, 200 (2003)

�  Ground state population oscillates at beat frequency b (for b < 1/T1).

K
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1
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1
2a
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=

2
T

2
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b
saturable
medium

t

t + b t + b

E1,

E3,

measure
absorption

�  Population oscillations lead to decreased probe absorption  
    (by explicit calculation), even though broadening is homogeneous.  
�  Ultra-slow light (ng > 106) observed in ruby and ultra-fast light 
    (ng = –4 x 105) observed  in alexandrite.

�  Slow and fast light effects occur at room temperature!
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Slow and Fast Light in an Erbium Doped Fiber Amplifier
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•  Fiber geometry allows long propagation length
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Schweinsberg, Lepeshkin, Bigelow, Boyd, and Jarabo, Europhysics Letters, 73, 218 (2006).



Observation of Backward Pulse Propagation
 in an Erbium-Doped-Fiber Optical Amplifier
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We time-resolve the propagation 
of the pulse as a function of 
position along the erbium-
doped fiber.
Procedure
 •  cutback method
 •  couplers embedded in fiber

1550 nm laser ISO
80/20
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980 nm laser
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Signal

or

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, 
R. W. Boyd,  Science 312, 985 2006.

pulse is placed on a cw 
background to minimize
pulse distortion



Observation of  Superluminal and

“Backwards” Pulse Propagation
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8.  Spontaneous and Stimulated Light Scattering

























Experiment in Self Assembly

Joe Davis, MIT



Thank you for your attention! 
 

 
     


