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Introduction

CPV «in the back of the envelope» is simple: take a small solar cell,
some concentrating optics (lens or mirror) and a Sun tracker.

Why? How?
«Why»: reducing semiconductor surface we limit cost, moreover we

can use higher efficiency solar not-silicon cells to have more power
per square-meter. [Silicon cells do not stand concentration!]

«How»: we need to control many technologies that must be sound
and economically sustainable.
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Motivations [1]

« Traditional» photovoltaics based on silicon solar cells need large
areas due to its low (~14%) efficiency. CPV can use higher
efficiency cells (triple junction, 3J, see later) that need less area for

same installed power.

Very high (500 — 1500 X) concentration ratio allows substitution of
large areas of semiconductor with cheaper materials.

Silicon solar cells have large efficiency dependence (-0,3 %/K) on
temperature: a real problem for this technology.

3J solar cells have much smaller efficiency dependence (-0,04 %/K)
on temperature: a great advantage with high concentration that
implies the necessity for the cells to stand high temperatures.
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Motivations [2]

4. Silicon power plants frequently spoil large areas of land.

5. CPV although requires the use of trackers (an extra cost)
allows dual land usage.

6.  For CPV is possible the use of cheap materials treated with
mature and reliable technologies, as molded polycarbonate,
aluminum, and non-optical glass.




How It works

Cell

iy

Parabolic mirror

- Mirrors or lenses
concentrate solar light on
very small (<1cm?) solar cells

Conventional simple designs

The use of high efficiency
triple junction (3J) solar cells

opﬁca. ficency  COMpensates for the optical
losses

Concentrating optics

module efficiency of
30% feasible

@ Cell efficiency

Heat sink




Spectral Irradiance (W/m?2 pm)

1600 A
1400 -
1200 -
1000 -
800 -
600 -
400

200

Triple junction Solar Cells [1]

They were developed for space application with huge investments. Their cost
is now affordable for civil applications.

Use of three junctions enlarges the spectral sensitivity, that means higher
efficiency. Moreover the efficiency has lower temperature dependence:
-0.04%/K.

A series of three

m junctions, each

Ge Junction sensitive to a different
spectral range

[ Am1.5 sfectrum

r\_/\ I Gy’ (170 V) Cell Structure Diagram
GdinAs (1.18eV) (Tunnel diodes not shown)
B fe (067 V)

Almost the whole solar spectrum
converted

AMI1.5 Spectrum is published by the American Society for Testing and
Materials and is intended as average condition in most US states for
surfaces at 37° and it is conventionally accepted as the terrestrial solar
spectrum that takes into account the atmosphere effects.
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riple junction Solar Cells [2]

- Efficiency of R&D prototype 3J cells: 43.5 %

Now~ - Efficiency of commercially available 3J cells: 40 %
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Why multijunction solar cells”?

. 1600 A [ Awmt. rum
The portion of solar spectrum converted ol 8 — iy
depends on energy gap: "

1200 - Thermalzation losses

E
=5
£
3
g 10004
c Energy that can be
% 800 used by a Si solar coll
5x10” r , . 5x10” : = €
E o
4 4 . =
400 A
: : &
g 3 s 3 200
i T 5T 500 1000 1500 2000 2500
- 1+ Wavelength (nm)
° e Er e Silicon
Photon energy (eV) Photon energy (eV)
High current, but low voltage High voltage, but low current
Excess energy lost to heat Subbandgap light is lost
Quantum Efficiency 18001 NALS secian
oo I ff . 1400 - GalnP (1.70 eV)
ncrease erriciency I Gainas (1.18eV)

90 . . 1200 A - .67 @
m increasing number S
of junctions:

30 1

fg: | tJL N 200 {

200 400 600 800 1000 1200 1400 1600 1800 2000

InGaP InGaAs Ge

Spectral Irradiance (W/m2 pm)

External Quantum Efficiency (%)

Wavelength (nm)

Wavelength (nm)



Emcore’s Solar Cell Performance Roadmap
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Efficiency dependence on concentration

The efficiency maximum can be optimized for
different concentrations basically

changing the fingers (contacts) cross-section.

Fingers account for 5-7% of cell area:
it is a good idea to keep them thin,
but thinner fingers means higher
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Current mismatch

The three sub-cells (top, middle, bottom) are connected in series: this
means that the sub-cell producing less current will limit the current

generated by the whole cell.

Current mismatch can be due to:

Spectrum mismatch: the spectrum of the light illuminating the cell is
not the one for which the cell was optimized;

Chromatic aberration: different cell receive different power profiles;

I = min(lysop, L migs L bot)
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Dependence on solar spectrum

Current mismatch implies different power measurement in different regions and also
at different time during the day.

Example of a measurements performed in Northern Italy, with wind/temperature
almost constant. One would expect a constant efficiency. Yet, efficiency is lower at
beginning and end of the day. Relative amount of higher energy photons is lower in
the second part of the afternoon, this explains why efficiency is not constant.
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Differencies Lenses/mirrors

Lens: no shadow cast but
chromatic aberration

Chromatic aberration causes Top-cell spot
current mismatch :
Mirrors: in general shadow cast but b 4
no chromatic aberration [ P
R Middle-cell spot |
/ \ s A
V'S
v ‘
~ - |

Mismatch: the top cell has a higher local
= shadow concentration at boundaries than the middle cell.
Solar cell The excess current may not be harvested.



Acceptance angle

Module efficiency

Definition: the limit angle A I

to have at least 90% of 90% _*zzﬁ ___________ S
efficiency recorded with o -\
perfect alignment 2o R

2 10
]
g s

oON A OD

0 0.5 2

@v\’s

Sun's incidence angle [degrees] acceptance angle

Why the acceptance angle is important:

High acceptance angle allows less stiff tracker, lower precision in optics, lower
precision in assembly, lower precision in field, with a total cost reduction.



Optics: requirements

A very uniform irradiance profile on cells is necessary to
achieve high efficiency

A wide acceptance angle is necessary to compensate
mechanic;al deviations from design: optical mismatch

Dy /"
Ve "”1/ I' ‘;,‘(_»;‘
Flexure an{ '
torsion in

aperture frame

Sun’s subtended angle:
Pointing —. / +0.26°

A vector

»

Flexure in
pedestal and
drive

CPV system 90% power
acceptance angle
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Optics: example of simulation

- Design using ray tracing software
- Optimization using merit functions
- Large acceptance angle/uniformity

Pictures show optical simulations

Secondary
optics

sola(

e

cel

4
d B

The very uniform irradiation profile on cell N
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v' Area of mirrors: 22x18x14 cm?3

%’ ) ® v’ Area cell 0.3 cm?2(x2)
Q TwinFocus v' Geometrical concentration: ~580 X

- 3J solar cells
- Parabolic concentrators

- Injection molding of thermoplastic
materials

- Sun tracker

Four test stations (~5 kWp each)
in operation since 2012 demonstrate
the validity of the project
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Efficiency depends on temperature

19— * Voltage is linear with temperature, but:
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Heat sinking

AT(TceII'Tair)< 5 O OC

It is always necessary an in-house design,
simulation and measurements on solar receiver

Thermal budget at 600 Suns:
13W on a 5.5x5.5 mm?2, 3J cell.

Cell:

5.5x5.5 mm? >/i /

Solar
receiver Passive heat sink




Thermal interface

Typical CPV receiver, thermal view.
Many materials come into play.

Thermal Conductivity (TC) Watt/(meter * Kelvin)

of material is just as important as its thickness Thermal expansion
coefficient
Concentrated
Thermal Conductivity SUN CTE
,,,,,,,,,,, ; ( W/mK) 200 to 1000+ ( ppm/C)

Receiver Module

20/60 Triple Junction PV Die 50/6.0
40/7.0 TIMO @
46 ~ Ceramic 5.5
1.0/4.0 _ TC40Cto110C (R

210/ 360 Cu /Al: Heat Sink / Rail 16/ 24

TIM: Thermal Interface Material
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Tracking issues

- Mounting: cost!
- Angular range
- Max wind speed

Increasing maximum wind speed at which

the tracker follows the Sun, the energy yield of the system increases.

But it has to be engineered according’'to the wind profile of the site:

why to have an extremely performaint tracker (that costs) if there is not that much wind?

»n
~
X o
1'1 00 7] ~ | =——Tracker cost 25 m2
E i E Tracker cost 16 m2
o Yo = Tracker cost 9 m2
- 80+ N
9 ] e
s ol
2 604 o
S T 2,01
o =
> 40 5
= c
m 4
o > 1.5 e
= | ’
> 20 8
O 5
X X~
0 I I I I I I I 8 1 0 T T T T T T T T
Maximum service wind speed (m/s) = ’

Maximum service wind speed (m/s)
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Rated power/real power

Actual Power compared to Rated Power

70% 75% 80% 85% 90% 95% 100%

Compared to silicon the rated power oy
is more similar to the real power,
because rated power for silicon is Mono-5i PV :
usually measured in the lab (STC): cells —d
temperatur_e 25°C at conditions that will  Polvsi?v
never met in real world. —

Thin-Film

Since 3J solar cells have less
dependency on temperature:

rated power measured in field is less
dependent on air temperature.

W Rated Power  m Power @20C Ambient  m Power @40C Ambient

Best performance at high temperature:
best for MENA region and high DNI in
general



’ai:rwin FO@US Limitations

The general layout of the TwinFocus (head-light)' prototypes had shown two
major limitations:

-unit size too small, that requires a complex mechanical support structure;

-consequently also the wiring of the units is bulky;

-moreover cells cast shadow onto mirrors.




%“," TwinFocus ® Evolution

-Make larger units integrating mechanical supports and heat sinks;
-Increase concentration avoiding shadows onto mirrors;
-Simplify the electrical connections;

-Use of dovetail techniques to fix components avoiding use of screws.



In the NEW version Two aluminum proprietary extruded profiles hold
TWELVE mirrors, support TWETYFOUR cells and provide efficient thermal
sink. Daisy chain connections of the cell is internal and uses standard wiring
techniques. Module is about 2.3 x .29 x.14 m?3 with a concentration >800 x.
New optical design allows to keep cells vertical: no shadows. Module
extremely thin (14 cm) compared to concentration factor!

Each mirroris .18 x .263 x .14 m3







Simulation of thermal profiles at 25 °C ambient.

Contorno: Temperatura [°C] Max: 64.501

Min: 44.596



Improved optical design

Each concentrator consists of 4 sections of off-axis
quasi-parabolic mirror Fmmmssmmmme——o--ooo-----

sorgente ! Illumination profiles
________ Concentrazione geom.
__________ I CELLA 820 X
-------- 5.5
5
E
(0}
n
n
©
N
0

0 y’ asse [mm] 9.9

The cell is placed Optimizing primary and
after the focus of

Discretization of the problem: each reflective secondary optics=>
each reflective sector illumination profile
. sector
completely fills the cell 3J



-
Project technique

A map is created between the source and the cell in order to

build in iterative method the optical interfaces '
ce

i-th subcell
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Simulation results

lllumination profile Irradiance
5.5; 55.1
50
o 4 Area cella: 5.5x5.5 mm?
E 0 Area cella effettiva: 5.3x5.3 mm?2
é Geom. conc. factor: 820X
- 30
N g Potenza incidente: 13.2 W
(b ) . .
N 3 Irradianza massima: 53.6
% 20 N W/cm2
Peak/mean ratio: 1.40
10

0 assey' [mm] 55 0



Optical design compliance

Accettanza angolare

Tilt y asse [deg}t

100

0 90
80

0 60
40

20

14
_o I : : : 0
-2 090 0 4090  +2

Tilt x asse [deg]

The objective of obtaining a value of
angular acceptance of £ 1.0 ° was
well achieved for the y axis, while the
x axis would have required a prism of
excessive size.

Tilt y asse [deq]

Irradianza massima

|1
1

I

-2 -2 0 +2

Tilt x asse[deq]
The maximum irradiance ('hot spot')
in certain conditions of misalignment
is 145W/cm2, corresponding to about
1600 suns (1 sun = 0.09 W/cm2).
Acceptable in accordance with the
datasheet of the 3J cell.
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Electtroluminesce test

28 cm

g Cella3Jin

{ elettroluminescenza

)

30 m

occhio

Using the cell as a LED and observing the
concentrator by a sufficiently large
distance (about 30m) is possible to obtain
information on positioning errors of the
cell and of the prism: the ideal case
requires that the four areas are illuminated
evenly. Black areas indicate errors mirror
profile, gluing or cell centering prism.

Optimization of molding
parameters, and the position of
the cell and the prism.

cell




Wavelenght [nm]

EL intensity [a.u.]

The relationship between the emission spectrum and the potential differences of
the sub-junctions is the same that leagues the spectrum of the incident radiation to
the tension produced on the photovoltaic cell and is called reciprocal relationship
(RR):

PevieL= EQE(E) @gg(E)-exp((VIV1)-1)
where @p, g is the radiation flux emitted/absorbed, EQE(E) is the quantum

efficiency, @gg(E) is the Black Body radiation, V is the junction voltage and V; is
the thermal potential.



Using the relationship RR, from the IV curve in EL we can determine the curve IV
in photovoltaic mode. The efficiency of the cell, which is proportional to the
parameter Fill Factor (FF) of the IV curves, can then be determined by
measurements in EL.

A4
EL 4

FFEL= A/(IMAX'VMAX)

FFPV= B/( ISC.VOC)

FFe =FFj

A4

\Y




3J cell ELand PV (0,22 A)

1[A]
0,25
| |
0000904000000, 00%04%4,0000000 000000000000 000000¢ v.‘“.o.oooooq»..‘
02 \
0,15
+ PV
= EL
0,1
0,05 ‘
0 !
0 0,5 1 1,5 2 2,5 3 3,5 v[v]

| versus V curve of a cell through active load interfaced with a PC



Current [A]

Test with active load of a
complete module.

Two times 4 crews on the caps
keep the elements together.

2,2

1,8
1,6
1,4

1,2

0,8
0,6
0,4
0,2

0

First prototype in field tests

TwinFocus2 - 2014, July 16 -- DNI 894 W/m2
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Current [A]
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TwinFocus2 - 2014, July 16 -- DNI 894 W/m2
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Where CPV is favored

" c -

So far, due to very low cost of solar
grade silicon (unexpected in 2008),
CPV has higher cost (€/Wp). However
it is not power, but energy that
matters.

CPV have much higher energy vyield
with the same installed power where et sumof et e rcince
DNI (Direct Normal Irradiation) is .
higher.




DNI & GHI world maps

WORLD MAP OF DIRECT NORMAL IRRADIATION GeoModel
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Silicon PV
Silicon PV 15 kWp
- TwinFocus 15 kWp 9.4 kWp (116 m2) §
Locatlon (73m?) (73 m?)§ (same installed
(same area) power)

North. ltaly (?n':' S 9 MWhiyear 12 MWhiyear 19 MWhiyear
Central Italy (DNI = 1600 kWh/ 22.4 MWh/
Sicily (DNI = 1800 kWh/m?) 27 MWhiyear 15 \Mwhiyear 24 MWhiyear

25.6 MWh
MENA*(DNI = 2800 kWh/m?) 42 MWhiyear 16 MWhiyear > Sear /

Data: PVGIS calculator (http://re.jrc.ec.europa.eu/pvgis/apps4/
pvest.php)

§ Modules: 255 Wp

*MENA: Middle East+North Africa



Thank you!



SSE Parameters

— Find A Different Location Accuracy  Methodology “nite & o
(Units & Definition)

DNI resources
: ﬂ AT'EtNOSPHERIC NASA Surface meteorology and Solar Energy -

Available Tables

SCl
DATA CENTER

Latitude 38.017 / Longitude 12.517 was chosen.

=

Elevation: 41 meters

- The DNI resource is not known so oy o e
exactly as GNI is. Nty s

Center

Some software give DNI: Eosweb, R Lanieles | B
epw, Meteonor St iy

- In general are calcuiated.

Parameters for Sizing and Pointing of Solar Panels and for Solar Thermal Applications:

2000 \ Monthly Averaged Insolation Incident On A Horizontal Surface (sWh/m?/day)

mDNI . — o
B, e el e o o e ]

1500 22yea Averge (234333 476601 [ 715 758 795 (705 541 89 [250 160 503
1000
500 -

0 |

Monthly Averaged Direct Normal Radiation (kWh/m?/day)
Padova Catania Athens Barcelona Lisbon

Lat 38.017 (Annual
Loa 12,517 Jan |Feb Mar ([Apr May |Jun Jul |Aug [Sep Oct Nov Dec Average

22-year Average [4.09 [5.05 (633 [7.02[8.10 [9.17[0.63 [8.78 [7.06 [5.79 [411 [350 [ 657

Irradiation (kWh/m2/year)

As calculated by epw, some locations have
even more DNI than global irradiation:
not a paradox




LCOE

Leveled Cost Of Energy is the most important parameter when choosing a power
system.

Basically: (yearly energy yield)/(cost of system).

A CPV system may be more lucrative than a fixed silicon system of lower
installation cost (€/Wp) because the energy yield is higher:

This may happen in higher DNI end/or temperature areas. The DNI level that
defines the break-even point depends on many factors, not last the cost of the
systems.

Peak CPV has a leading LCOE(in its target market (>6 DNI)
Demand Higher consistent energy production
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Conclusions

« CPV despite the very simple principle, it implies the mastering of very
different technological fields: optics, thermal management, fine
mechanics, simulation tools, science of materials, meteorological
science, and many others.

« Taking advantage of mature technologies developed in other fields,
especially automotive, it is possible to reach grid parity, and be more
economical than other power system, in higher DNI areas.
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Different layouts

- Point focus
- Linear focus

- Heliostat

Flgure 3 - Schamatic of point-focus Fresnsl lens PV concentrator

Standard technology,
passive heat sink possible

Active heat sink necessary: cost! P 2~ Scnsmae o nar o ough Y
Low concentration ratio



I
Heat sinking

- Increasing illumination level on the cell the
electrical output increases
up to a limit:
- The limit is given by the amount
of heat that the cooling system
can dissipate: over a limit
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Certification

IEC 62108 is the standard norm for CPV, necessary for two reasons:

Countries that grant a feed-in tarinf usually requires that modules have
passed 62108;

Buyers/investors/banks see it as a guarantee of «due diligence» and
reliability.

Many tests:
Electrical performance
Ground path continuity
Electrical insulation
Wet insulation "1
Thermal cycling B a n ka b I I Ity
Damp heat
Humidity freeze
Hail impact
Water spray
Diodes
Robustness of connectors
Mechanical load
Off-axis beam
Ultraviolet conditioning
Outdoor exposure



Una cella fotovoltaica a giunzione singola o multipla, alimentata da una corrente

diretta |, ,
LED.

emette radiazione, detta di elettroluminescenza (EL), similmente ad un

Nello spettro di emissione ogni sub-giunzione determina un picco di emissione
alla frequenza corrispondente all’energia della sua band-gap.
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La relazione che lega lo spetro ar emissione aie
sub-giunzioni € la stessa che lega lo spettro della radiazione incidente alla
tensione fotovoltaica prodotta sulla cella ed € detta relazione di reciprocita (RR):

differenze di potenziale delle

PpyieL= EQE(E) @gp(E)-exp((V/V7)-1)

dove @p,g. € il flusso di radiazione assorbita/emessa, EQE(E) e [l'efficienza
quantica esterna, @gg(E) € la radiazione di corpo nero, V la tensione di ogni
giunzione e V; é il potenziale termico.
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La figura mostra uno spettro di EL di una cella a tripla giunzione 3J misurato in
laboratorio (LUXOR) dove sono evidenti i picchi di emissione delle sub-giunzioni
top e middle.

Il range dello spettrometro non consente di vedere il picco della giunzione bottom.

Dallo spettro di EL, tramite la RR, si possono calcolare le tensioni interne della
cella multi-giunzione.

La tensione della giunzione bottom €& il complemento delle tensioni top e middle
alla tensione esterna della cella.



