Optical Airy beams and bullets

Demetri Christodoulides

CREOL & FPCE THE COLLEGE OF OPTICS AND PHOTONICS

CREOL-College of Optics and Photonics

Medical applications

Lasers

Military

CREOL - The College of Optics and Photonics

CREOL-College of Optics and Photonics

Nanolasers

Integrated optics

CREOL - The College of Optics and Photonics

Optical fibers

Light travels in straight lines

Euclid of Alexandria 325-265 BC

Optica

Yet, can light bend?

Can light bend?

Are curved light trajectories possible?

science fiction

arts

Bending light

Negative refraction

Cloaking

Gravitational lensing

CREOL - The College of Optics and Photonics

Optical diffraction

Francesco Grimaldi 1613-1663

Diffraction

Diffraction is defined as "any deviation of light rays from rectilinear paths that can not be interpreted as reflection or refraction".

Diffraction of a Gaussian beam

Diffraction

A beam from a green laser pointer, 1 mm in diameter, will have a diameter of 1500 km when it reaches the moon.

That will be the size of Texas !

Why optical beams diffract?

Intuitively one may say that all plane waves components comprising the beam tend to walk-off from each other and a as a result the beam diffracts.

Non-diffracting beams & waves

Diffraction-free patterns?

$$E = E_0 \exp[i(k_x x + k_z z)] + E_0 \exp[i(-k_x x + k_z z)]$$
$$E = 2E_0 \cos(k_x x) \exp[ik_z z]$$
$$I = |E|^2 = 4E_0^2 \cos^2(k_x x)$$

Non-diffracting beams - conical plane wave superposition

4-waves

Non-Diffracting Beams

<u>A non-diffracting beam</u> remains intensity invariant during propagation.

Bessel

Mathieu

Non-diffracting beams share two common characteristics:

Non-diffracting beams (like plane waves) are known to convey **infinite power or energy.**

All the known non-diffracting beams can be generated through conical superposition of plane waves.

On the other hand, finite energy beams/ pulses are known to eventually diffract or disperse.

 $k_{x,i}^2 + k_{y,i}^2 = const.$

J. Durnin, J. J. Miceli, and J. H. Eberly, PRL 58, 1499 (1987).
J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, Opt. Lett. 25, 1493-1495 (2000)

One-dimensional non-diffracting accelerating beams:

Airy-beams

Non-spreading Airy wavepackets

$$i\hbar\frac{\partial\psi}{\partial t} + \frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} = 0$$

<u>Free particle</u> <u>1D Schrödinger equation</u>

The Airy wavepacket is a unique, non-spreading and accelerating solution!

The Airy function

George Biddell Airy 1801-1892

 $\frac{d^2 y}{dx^2} = xy$

Rainbow

Why do Airy packets freely accelerate?

Equivalence principle & quantum mechanics

D. M. Greenberger, Am. J. Phys. 48, 256 (1980)

Uniqueness

It can be formally shown that the Airy state is the only non-dispersing wavepacket in 1D.

K. Unnikrishnan and A. R. P. Rau, Am. J. Phys. 64, 1034 (1996)

Finite Energy Optical Airy Beams

Finite power optical Airy beams have recently been suggested*:

 $\varphi(x, z = 0) = Ai(x / x_0) \exp[x / w]$

* G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007)

Acceleration dynamics of Airy Beams

Finite energy Airy stripe beams propagate according to* :

$$I = \left|\varphi(x,z)\right|^{2} = \left|Ai\left[x/x_{0} - \frac{1}{4k^{2}x_{0}^{4}}z^{2} + i\frac{1}{kwx_{0}}z\right]\right|^{2} \exp\left(2x/w\right)\exp\left(-\frac{1}{k^{2}wx_{0}^{3}}z^{2}\right)$$

* G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. **32**, 979 (2007)

Optical analog of projectile ballistics

The Airy beam moves on a parabolic trajectory very much like a body under the action of gravity!

Experimental Set-up

$$= \exp(-ak^2)\exp(\frac{i}{3}k^3)$$

We can synthesize a truncated Airy wave by imposing <u>a cubic phase on a Gaussian beam</u> and then taking its <u>Fourier transform</u> using a lens

 $P_0(k)$

Phase Mask for 2D

25

Other possibilities-2D cubic phase masks

U. of Arizona

Papazoglou et al, PRA A 81, 061807(R) (2010)

f = 500 mm

200 µm

f=100 mm

f = 200 mm

Ballistic dynamics of Airy beams

An Airy beam can move on parabolic trajectories very much like a cannonball under the action of gravity!

Parabolic deflection of the beam:

$$x_d = \theta z + z^2 / (4k^2 x_0^3)$$

* G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Optics Letters 33, 207 (2008)

Ballistic dynamics of Airy beams

Beam's center of gravity moves on straight lines

In agreement with Ehrenfest's theorem

Transverse electromagnetic momentum is conserved !

2-D Airy Beams

Similarly, we can introduce 2D finite energy Airy beams:

$$\phi(x, y, z = 0) = Ai(x / x_0) Ai(y / y_0) \exp[(x / w_1) + (y / w_2)]$$

Example: $x_0 = y_0 = 50 \,\mu m$ $w_1 = w_2 = 0.5 \,mm$

Diffraction of the main lobe

The main lobe launched in isolation has experienced a 5-fold increase in the beam width, while the peak intensity has dropped to 5% of its initial value.

Possibilities

Airy beams can "heal" themselves during propagation.

Airy beams can circumvent opaque obstacles.

Spatio-temporal **optical bullets** resisting both <u>diffraction</u> and <u>dispersion</u> effects.

Self-healing of Airy Beams

Airy beams are robust and self-reconstruct even under severe perturbations

Broky, Siviloglou, Dogariu, and Christodoulides, "Self-healing properties of optical Airy beams," Opt. Express 16, 12891 (2008)

Self-healing

Regeneration

Airy Beams in adverse environments: I. Scattering media

Diameter = 1.5 µm Severe Scattering

Silica microspheres (n=1.47) suspended in water (n=1.33) Concentration: 0.2 % w/w

Optical nano-particle manipulation using curved Airy beams

Baumgartl, Mazilu & Dholakia Nature Photonics 2, 675 - 678 (2008)

Airy Beams in adverse environments: Turbulent media

Airy beam

Gaussian beam

Airy beams are resilient under turbulence while a comparable Gaussian beam is badly deformed.
Scintillation dynamics of Airy beams under turbulence

Scintillation of Airy beam arrays in atmospheric turbulence

Yalong Gu* and Greg Gbur

Department of Physics and Optical Science, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA *Corresponding author: ygu4@uncc.edu

> Received August 9, 2010; revised September 14, 2010; accepted September 17, 2010; posted September 27, 2010 (Doc. ID 133186); published October 12, 2010

We investigate the scintillation properties of Airy beam arrays in atmospheric turbulence. By utilizing the "selfbending" propagation property of Airy beams, the constituent beamlets propagate through relatively independent regions of turbulence but still largely overlap at the on-axis detector. Through numeric simulations, it is shown that the scintillation of an Airy beam array is significantly reduced and close to the theoretical minimum. © 2010

Optics Letters vol. 35, pp. 3456, (2010)

Airy beams in optical filamentation studies

Curved plasma channel generation using ultra-intense Airy beams in air

U. of Arizona /CREOL

Science, 324, 5923 (2009)

Curved plasma channel generation using ultra-intense Airy beams in air

Curved plasma channel generation using ultra-intense Airy beams in air

Intensity distribution of the forward emission along the filament, for different values of pulse energy. At energies above 5 mJ, the distribution develops two peaks consistent with the experimentally observed emission patterns

Abruptly auto-focusing waves

Efremidis, Christodoulides, Opt. Lett. 35, 4045-4047 (2010)

Autofocusing waves versus Gaussian beams

Experimental observation of auto-focusing waves

Fused silica ablation

Experimental results: Tzortzakis, FORTH Crete, OL vol. 36, p. 1842 (2011)

Optical Airy Bullets

Optical Bullets

An spatio-temporal optical wave propagating under the influence of diffraction and dispersion obeys:

$$i\frac{\partial E}{\partial z} + \frac{1}{2k} \left(\frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial y^2} \right) - \frac{k_0^{"}}{2} \frac{\partial^2 E}{\partial \tau^2} = 0$$

Diffraction Dispersion
 $k_0^{"} > 0$: Normal dispersion

 $k_0^{"} < 0$: Anomalous dispersion

Broadening in both space and time occurs

Nonlinear optical bullets

In the presence of nonlinearity one finds that:

$$i\frac{\partial E}{\partial z} + \frac{1}{2k}\left(\frac{\partial^2 E}{\partial x^2} + \frac{\partial^2 E}{\partial y^2}\right) - \frac{k_0^{"}}{2}\frac{\partial^2 E}{\partial \tau^2} + k_0 n_2 |E|^2 E = 0$$

If the dispersion and diffraction lengths are <u>equal</u> and if the dispersion is <u>anomalous</u>:

Spherical optical bullet

$$L_{dispersion} = L_{diffraction} = \frac{\tau_0^2}{\left|k_0''\right|} = \frac{w_0^2}{k}$$

$$i\frac{\partial\psi}{\partial Z} + \frac{1}{2}\left(\frac{\partial^2\psi}{\partial X^2} + \frac{\partial^2\psi}{\partial Y^2}\right) + \frac{1}{2}\frac{\partial^2\psi}{\partial T^2} + \left|\psi\right|^2\psi = 0$$

Y. Silberberg, Optics Letters 15, 1282 (1990)

Nonlinear optical bullets

- They demand equalization of dispersion and diffraction lengths (they are spherical)
- They only exist under anomalous dispersive conditions
- They need high power levels
- Nonlinear optical bullets are highly unstablethey <u>implode/explode</u> during propagation !

Never observed experimentally except in phase matched chi-2 crystals and only in 2+1 D (Frank Wise group-Cornell)

Are linear optical bullets possible?

$$i\frac{\partial\psi}{\partial Z} + \frac{1}{2}\left(\frac{\partial^2\psi}{\partial X^2} + \frac{\partial^2\psi}{\partial Y^2}\right) + \frac{1}{2}\frac{\partial^2\psi}{\partial T^2} = 0$$

Anomalous dispersion

Yes, as long as the diffraction and dispersion lengths are again equal!

$$\psi = \frac{\sin \sqrt{X^2 + Y^2 + T^2}}{\sqrt{X^2 + Y^2 + T^2}} \exp(i\mu Z)$$

More complicated bullets are possible as well.

Т

- Very difficult to synthesize
- Complex spectra
- Need dispersion +diffraction equalization

Y

Possible under anomalous dispersion

Are linear optical bullets possible?

$$i\frac{\partial\psi}{\partial Z} + \frac{1}{2}\left(\frac{\partial^2\psi}{\partial X^2} + \frac{\partial^2\psi}{\partial Y^2}\right) - \frac{1}{2}\frac{\partial^2\psi}{\partial T^2} = 0$$

Normal dispersion

Again, as long as the diffraction and dispersion lengths are equal!

$$\psi = \frac{1}{\sqrt{X^2 + Y^2 + (iT + c)^2}}$$
X-waves

- Very difficult to synthesize
- Complex spectra
- Need diffraction +dispersion equalization
- Possible under normal dispersion

Lu and Greenleaf, Ultrasonics 39 (1992). Di Trapani et al, PRL 1994. Christodoulides, Efremidis, Optics Letters **29**, 1446 (2004).

Optical bullets

To overcome these problems one has to disengage space and time- e.g. use separation of variables!

Given that 3 can be written only as:

2+1=3 1+1+1=3

A 1D non-dispersing packet is absolutely necessary as a building block.

Spatio-Temporal Airy Bullets

$$i\frac{\partial\psi}{\partial Z} + \frac{1}{2}\left(\frac{\partial^2\psi}{\partial X^2} + \frac{\partial^2\psi}{\partial Y^2}\right) + \varepsilon\frac{1}{2}\frac{\partial^2\psi}{\partial T^2} = 0$$

$$L_{dispersion} \neq L_{diffraction}$$

$$\psi = A i(\alpha T) J_0(\beta r)$$

Airy-Bessel Bullet

- Easy to synthesize
- Does not need diffraction +dispersion equalization
- Possible under any dispersion conditions

G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979 (2007)

Airy-Bessel Optical bullets

Cornell-CREOL

500

Delay (fs)

1000

Frank Wise's group

Self-healing in time after 6 L_d

Airy+Bessel optical bullets

12 diffraction + 6 dispersion lengths 90 micros-90fs 1020 nm

Cornell / CREOL 54

Airy-Bessel optical bullets

Two-photon fluorescence

Bessel-Airy (90 fs main pulse lobe)

Spatio-Temporal Airy Bullets

Airy is the only non-dispersing wavepacket in 1-D

(a) Airy-Bessel (b) 3D Airy and (c) Airy-X optical non-dispersing bullets.

Airy Bullets

Papazoglou et al, PRL 105, 253901 (2010)

Airy plasmons

$$\nabla^{2}E_{y} + k_{0}^{2}\varepsilon E_{y} = 0$$

$$\downarrow$$

$$\begin{bmatrix}E_{y}(x, y, z) = A(x, z)e^{ik_{z}z}e^{-\alpha y}\\\alpha_{d}^{2} = k_{z}^{2} - k_{0}^{2}\varepsilon_{d}\\k_{z} = k_{0}\sqrt{\varepsilon_{d}\varepsilon_{m}}/(\varepsilon_{d} + \varepsilon_{m})$$

$$\downarrow$$

$$\frac{\partial^{2}A}{\partial x^{2}} + 2ik_{z}\frac{\partial A}{\partial z} = 0$$

Airy plasmon propagation.

$$A(x,z) = \operatorname{Ai}\left[\frac{x}{x_0} - \left(\frac{z}{2k_z x_0^2}\right)^2 + i\frac{az}{k_z x_0^2}\right] \exp\left[i\left(\frac{x + a^2 x_0}{2x_0} \frac{z}{k_z x_0^2} - \frac{1}{12}\left(\frac{z}{k_z x_0^2}\right)^3\right)\right] \exp\left[a\frac{x}{x_0} - \frac{a}{2}\left(\frac{z}{k_z x_0^2}\right)^2\right]$$

A. Salandrino and D. Christodoulides, Opt. Lett. 35, 2082-2084 (2010)

Airy plasmons

• Selfelfealitig rbehavior pagation

Experimental observation of Airy plasmons

Mask
Plasmonic Airy beam

Kivshar's group-Australia: PRL 107, 116802 (2011). Zhang's group, Opt. Lett. 36, 3191 (2011). Zhu's group-Nanjing University PRL (2011).

Super-continuum generation using Airy pulses

P. P. C. C. C.	
	-
11	

Polynkin et al. U. of Arizona, Phys. Rev. Lett. 107, 243901 (2011)

New directions

Sending femtosecond pulses along curved trajectories

John Dudley's group

Can we identify similar accelerating beams which are non-paraxial?

To do so we must use a non-paraxial formulation based on Helmholtz equation

$$(\nabla^2 + k^2) \{ \vec{E}, \vec{H} \} = 0$$

New directions

Non-paraxial accelerating Bessel wave-packets, solutions to Maxwell's equations

$$\vec{E} = \hat{y} J_{\nu}(kr) \exp(i\nu\theta) \exp(-i\omega t)$$

Kaminer, Bekenstein, Nemirovsky, and Segev, PRL 108, 163901 (2012).

Non-paraxial Airy and Bessel beams

For a FWHM of 500 nm, the main lobe can bent $50^{0}\,after\,10\;\mu\text{m}$

 For a FWHM of 500 nm, the main lobe can bent 70⁰ after 10 μm

Are there any other accelerating vectorial solutions of Maxwell's equations ?

0.75 0.5

Elliptic Helmholtz equation

$$\begin{bmatrix} \frac{2}{f^2(\cosh 2u - \cos 2v)} \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2}\right) + k^2 \end{bmatrix} \psi_z = 0$$

$$x = f \cosh u \cos v; \quad y = f \sinh u \sin v$$

$$0 \le u < \infty; \quad 0 \le v \le 2\pi$$

$$\operatorname{or} E_z = R(u)S(v) \cdot \begin{bmatrix} \frac{d^2}{dv^2} + (a - 2q\cos 2v) \end{bmatrix} S(v) = 0$$

$$\begin{bmatrix} \frac{d^2}{du^2} - (a - 2q\cosh 2u) \end{bmatrix} R(u) = 0$$

 $q = f^2 k^2 / 4$ and parameter *a* can be obtained from sequence of eigenvalues $a_m (m = 1, 2, ...)$ from differential equation on S(v).

$$\psi_{z}^{m}(u,v;q) = Ac_{e,m}(v;q)Mc_{m}^{(1)}(u;q) + iBs_{e,m}(v;q)Ms_{m}^{(1)}(u;q)$$
Even Radial/Angular Mathieu Functions Odd Radial/Angular Mathieu Functions

* P. Aleahmad, M. A. Miri, M. S. Mills, I. Kaminer, M. Segev and D. N. Christodoulides, *Phys. Rev. Lett.* 109, 203902 (2012)
* P. Zhang, Y. Hu, T. Li, D. Cannan, X. Yin, R. Morandotti, Z. Chen, and X. Zhang, *Phys. Rev. Lett.* 109, 193901 (2012)

Future directions

Aleahmad, Miri, Mills, Kaminer, Segev, and Christodoulides PRL 109, pp. 203902 (2012)

Prolate Spheroidal Coordinates

Diametric drive acceleration

warp drive ??

diametric drive

Diametric drive acceleration: Newton's third law

Experimental observation of diametric drive acceleration

Max Planck Erlangen-CREOL, Nature Physics, pp. 780-784, 2013 In principle Airy beams can be used in:

•Optics

•Microwaves

Acoustics-Ultrasonics

Airy beams and pulses: applications

Biophotonics

St. Andrews

Filamentation

Arizona/UCF

Plasmonics

Berkeley/ANU/Nanjing

Super-continuum generation

Micromachining

J. Europ. Opt. Soc. Rap. Public. 8, 13019 (2013)

Franche-Comté

U. Of Arizona

Airy beams and pulses:applications

Light-sheet microscopy using Airy beams

Higher contrast and resolution 10X FOV

St. Andrews Nat. Methods, April 2014

Stochastic optical reconstruction microscopy (STORM) using Airy point spread function

Harvard Nature Photonics, April 2014

Electron Airy beams

Tel-Aviv

Nature, 331 (2013)

Caustics are everywhere

CREOL - The College of Optics and Photonics