Introduction to the physics
of artificial gauge fields

Lecture 2: Magnetism in a periodic lattice

Jean Dalibard
College de France and Laboratoire Kastler Brossel
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Magnetism and periodic potential

cyclotron motion motion on a square lattice
| |
—p
a

Competition between two phenomena (frustration) :

b =/ h/qB

a’ qBa? P { ® = Ba? :flux across a cell
= = 2T —
02 h d, ®y = h/q :flux quantum

= Aharonov-Bohm phase along the contour of a cell



Relevant values for Aharonov-Bohm phase 27®/®

In a regular solid:

B~ 100T a~1A=10"""m

® = Ba’® ~ 107 1¥ Wb
dyg=h/qg~410"P Wb

a — s 21® /Py~ 1077

No drastically new effect expected in this “weak field” regime

If the flux Ba? becomes much larger thanks to synthetic materials
or artificial gauge fields, frustration may play a dominant role.



Outline

1. Gauge fields on a lattice

Tight-binding model, gauge choice

2. Hofstadter butterfly

Sub-bands, Chern number

3. Shaken lattices

How to obtain non real tunnel matrix elements

4. Lattices combining several internal states

Laser assisted tunnelling, flux lattices



Outline

1. Gauge fields on a lattice

Tight-binding model, gauge choice

Lewenstein et al., Advances in Physics, 56:2, 243-379 (2007)



2D tight-binding model

—‘ (j,l+1)$ $_ H=H,+ I:Iy : separable
J
[0 G GV SR ) o PrI
<.7 T 171) (JJ) (] + lal 7,1
+Hwj i) (wyil) + hee.
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+4.J
2D Bloch waves
q= (o qy)  |thg) =Y V=Tl |y, ) Band width 8
7,
E(q) = —2J (cos(agy) + cos(aqy))
—4J

Brillouin zone: ¢; €| — m/a,m/al



Lattice in the presence of a magnetic field

[+ 1
I Aharonov-Bohm phase associated to the link 7 — 7’
*——>0-
T r
d(r —7r') / A-dr
[—1
ji—1 g 741

Peierls substitution in the tight-binding regime:
Each tunnel term of the Hamiltonian gets the corresponding phase

—J|wjs)wsy|  — =T UL Qg Y wg |



Uniform field and Landau gauge for a square lattice

On a given lattice cell, the only relevant physical quantity (gauge invariant) is ¢'©

where O is the sum of the phase of the tunnel coefficients around the cell.

Choose a zero-phase for all vertical links : discrete version of A = (—By,0,0)

_ ® = Ba® :fluxacross a cell
Phase along a cell: 2ra with a = ¢/ {

®y = h/q :flux quantum

i2ma (I41), Ji27a (I+1)
¢ e T e
1 1 1 Here:
i2ral i2mocl _
¢ e O =2ral+0—-27a(l—1)+0

= 2T
1 1 Ql

i2ma (I1—-1)| Ai27ma(I—-1)

* o >0
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Outline

2. Hofstadter butterfly
Sub-bands, Chern number

Lewenstein et al., Advances in Physics, 56:2, 243-379 (2007)
Di Xiao, Ming-Che Chang & Qjan Niu, Rev. Mod. Phys. 82, p. 1959 (2010)



General formulation of the problem ! e ae™m e
1 1 1 |a
We look for the spectrum of the Hamiltonian pi2ral | gi2wal
@ —>0—>0 '
H=—J) ¥ wj){w, ! ! !
R ' . ei27ra(l—1) ei27ra(l—1)
+ |wjir)(wip] + hee. e e

We keep the periodicity along x, but loose the periodicity along y

We look for the eigenstates as Bloch functions for x
W) =D e )
3.l
Recursion equation (Harper) for the coefficients C,

Important particular case when the coefficient ais rational, a = p’/p

One then recovers periodicity along y, but with the period pa instead of a.

2ral __ i2ma(l+p)

€ €



..................................................................

Example for the flux a =1/3 N in/3

Unit cell with 3 sites |A), |B),|C) ofsize a X 3a 3a 5 e

Look for eigenstates as Bloch functions: el o——1> ................ ........

U,) = Zeia(jQx+3ZQy) (a|Ajp) + B|Bjg) +4|Cj0)) ............... a .............. ________________ ________
. 3>l
H|Vq) = E(q) |Vgq) —> 3 x 3 matrix to diagonalize for each ¢

E E A
+4.J - +4J

The band gets fragmented

0 1o

in three sub-bands
I

—4.J —+ —4J




General shape of the spectrum

Hofstadter, 1976 44 -

4.7

Fractal structure, self -similarity

Dirac points for ot =1/2, 1/4, ...



+47 +

Landau levels recovered

Hofstadter, 1976

A Tew - -
E Toe S d
S Y i
HERY
FIF Very narrow equidistant levels

with w. = ¢B/M.g

For the square lattice:

—4J >

r
E,=n+1/2)hw,.

Meff

hQ

T 9742



Hall conductance of a filled band (fermions)

t
Consider for example an electron gas with S
a chemical potential e <u< 3hwe
2 2
[ ]
[ ]
[ ]
hw, | =============————- «— U
C AE, —
o0 00

- 1
Transverse current: N, = EAE:B corresponding to a single channel conduction

- C
Generalization to insulator-type filling of any band structure: Ny = —AF,

h

where Cis an integer (Chern number) [Thouless et al, 1982]

What does one get for the lowest band of the Hofstadter butterfly?

a=1/p = C=1 “topologically equivalent to LLL”



Aqy

How to calculate the Chern number?

Brill

DUin

Suppose that only the lowest band is filled

Z0

ne

Bloch functions 14 (7) = eld'” Uq(T) Uq(T) or |uq) : periodic part

Thouless et al (1982): linear response theory (Kubo formula) to
calculate the current J| for a given AE,

Berry connection in quasi-momentum space: A(q) = 1(uq|Vqugq)

Associated Berry curvature: B(q) = Vq X A(q)

c=2 [ B.g ]fA
27TB

Qx

Integer number: robust property that can be changed only with a contact between two bands

In cold atom physics, the Berry curvature B(q) can be
measured locally thanks to the Bloch oscillation technique



Physical interpretation of the Chern number

N, = CAE,/h

Ly

<7

>
a

AFE, —

Apply a force F associated with
the energy difference AE, = FL,

Bloch oscillations along x with the period

h

™B — —/—
Fa

During one Bloch period, how many particles
do cross a segment of length a ?

ON = aJyTB

1 C h
"I, (%AEw) <F—)

C Chern number



Outline

3. Shaken lattices

How to obtain non real tunnel matrix elements

Non exhaustive presentation. There are also approaches based
on “rotating” the lattice: Sorensen et al (2005), Tung et al (2006),
Hemmerich et al (2007), Kitagawa et al (2010)

Goldman, Juzeliunas, Ohberg, Spielman, arXiv:1308.6533



Goal of this approach Vizt)

Lattice modulated in time

V8

One wants to use the different parameters of the modulation
e amplitude
* frequency
* phase

to engineer the tunnel matrix elements J — J el?

Systematic approaches to this type of problem:
* Floquet formalism
* Effective Hamiltonian: Rahav et al (2003); Goldman & Dalibard, arXiv 1404.4373

Here, we will use a simple treatment based on
a (non-rigourous) time-average of the Schrodinger equation



Modulated 1D lattice

V(x,t)
V(z,t) = Ve — xo(t)]

> T

A

Unitary transform U(t) = exp (izo(t)p/h) that allows one to go from

I‘t[(t) = ﬁ + V[aj — a’;o(t)] to ]:](t) _ []5 —21]4\14(15)]2

N + V(x) with A(t) = Mdo(t)

A

Tight-binding approach: H(t) = —J elMado()/h Z (wjy1)(w;| + h.c.
J

The Schrodinger equation for the state vector |V () Z a;(t) lw;) leads to

ihay = —J (&j+l o~ i Maio(t)/h o e+1Ma:co(t)/h)

Two time scales: fast motion i¢(t), slow motion J/h . A temporal average then gives:

ihé; = —J a1 — Joyq average matrix element: J = J (¢! Mao(t)/h)



Changing the amplitude of the tunnel coefficient

J = J (el Mado(t)/hy

Eckardt, Weiss, Holthaus (2005)

Experiment in Arimondo’s group (Pisa, 2007) : sine modulation

ZZh0(t) = & sin(QUt 4 ¢)  ———s T = J(el%0sin@HO)y — 7 7(g0)

Bessel function

0.6~ . Allows one to change the sign of the
"a" tunnel coefficient, but not its phase




Changing the phase of the coefficient tunnel (version 1)

N zo(t)

JT—7 <ei Max’o(t)/h>
N /\ N t
>
Take a non-symmetric \/ V \

temporal modulation o
Ty 1
< T >
J 11 iMavi/h 13 ;
= ¢ 1/l 22 giMavy /R enerally non real
7T T T Jeneraty

vily +vT5 =0

_4kFBZ 4kFBZ

Equivalent of a constant vector potential:

shift of the minimum of the dispersion

relation that can be measured in a time K
of flight experiment

Struck et al, Hamburg 2012



Changing the phase of the tunnel coefficient (version 2)

Back to a sine modulation %io(t) = & sin(Q + @)

Try to print the phase ¢ of the modulation on the tunnel coefficient

* Until now we saw J = J Jy(&o), which does not work.

* But one can also produce J = J J1(&) €' using a resonance !

A _
Step one: superimpose a uniform force F V(z) - Fz

to the lattice.

Energy offset of two adjacent sites hf),

Step two: modulate at Q ~ € > T

Kolovsky (2011)



Use a resonance (continued)

Look for the state vector as

WD) = D as(6) e fuy)

Schrodinger equation

ihoa;, =—J (ajﬂ e~ 1 (Maio(t)/h—Q0ot) 4 a1 ot (Mag'co(t)/h—ﬂot))

M
For Taabo(t) = &y sin(Qt + ¢) and Q = Qg , the average tunnel coefficient is :

J = J<ei[§o Sin(Qt—l—qb)—Qot]> — ] <Z jn(fo)ein(ﬂt+¢) e—iQOt>

J=JTN (&o) e' OK for this 1D model (mere gauge transform)



Going to two dimensions

Non-symmetric modulation

Resonant modulation

AV (z)— Fx

Can be used for a triangular lattice

(does not work if the sides of the unit cell
are parallel)

Staggered flux Hamburg 2013

Can be adapted to a square lattice to produce
a uniform flux, with some subtleties ...

Munich 2013, MIT 2013



