Introduction to the physics of artificial gauge fields

Lecture 2: Magnetism in a periodic lattice

Jean Dalibard *Collège de France and Laboratoire Kastler Brossel*

Magnetism and periodic potential

Competition between two phenomena (frustration) :

$$\frac{a^2}{\ell_{\rm m}^2} = \frac{qBa^2}{\hbar} = 2\pi \frac{\Phi}{\Phi_0} \qquad \qquad \left\{ \begin{array}{l} \Phi = Ba^2 & : {\rm flux\ across\ a\ cell} \\ \Phi_0 = h/q & : {\rm flux\ quantum} \end{array} \right.$$

= Aharonov-Bohm phase along the contour of a cell

Relevant values for Aharonov-Bohm phase $2\pi\Phi/\Phi_0$

No drastically new effect expected in this "weak field" regime

If the flux Ba^2 becomes much larger thanks to synthetic materials or artificial gauge fields, frustration may play a dominant role.

Outline

1. Gauge fields on a lattice

Tight-binding model, gauge choice

2. Hofstadter butterfly

Sub-bands, Chern number

3. Shaken lattices

How to obtain non real tunnel matrix elements

4. Lattices combining several internal states Laser assisted tunnelling, flux lattices

Outline

1. Gauge fields on a lattice

Tight-binding model, gauge choice

Lewenstein et al., Advances in Physics, 56:2, 243-379 (2007)

2. Hofstadter butterfly

Sub-bands, Chern number

3. Shaken lattices

How to obtain non real tunnel matrix elements

4. Lattices combining several internal states Laser assisted tunnelling, flux lattices

2D tight-binding model

$$\hat{H}=\hat{H}_x+\hat{H}_y$$
 : separable

$$\hat{H} = -J \sum_{j,l} \left(|w_{j+1,l}\rangle \langle w_{j,l}| + |w_{j,l+1}\rangle \langle w_{j,l}| \right) + \text{h.c.}$$

E+4J Band width 8J -4J

Lattice in the presence of a magnetic field

Peierls substitution in the tight-binding regime: Each tunnel term of the Hamiltonian gets the corresponding phase

$$-J |w_{j+1,l}\rangle \langle w_{j,l}| \longrightarrow -J e^{i\phi(j,l \to j+1,l)} |w_{j+1,l}\rangle \langle w_{j,l}|$$

Uniform field and Landau gauge for a square lattice

On a given lattice cell, the only relevant physical quantity (gauge invariant) is $e^{i\Theta}$, where Θ is the sum of the phase of the tunnel coefficients around the cell.

Choose a zero-phase for all vertical links : discrete version of A = (-By, 0, 0)

Phase along a cell: $2\pi \alpha$ with $\alpha = \Phi/\Phi_0$

 $\left\{ \begin{array}{ll} \Phi = Ba^2 & : \mbox{flux across a cell} \\ \Phi_0 = h/q & : \mbox{flux quantum} \end{array} \right.$

Here:

$$\Theta = 2\pi\alpha l + 0 - 2\pi\alpha(l-1) + 0$$
$$= 2\pi\alpha$$

Outline

1. Gauge fields on a lattice

2. Hofstadter butterfly

Sub-bands, Chern number

Lewenstein et al., Advances in Physics, 56:2, 243-379 (2007) Di Xiao, Ming-Che Chang & Qian Niu, Rev. Mod. Phys. 82, p. 1959 (2010)

3. Shaken lattices

4. Lattices combining several internal states

General formulation of the problem

We look for the spectrum of the Hamiltonian

$$\hat{H} = -J \sum_{j,l} e^{i 2\pi \alpha l} |w_{j+1,l}\rangle \langle w_{j,l}| + |w_{j,l+1}\rangle \langle w_{j,l}| + h.c$$

We keep the periodicity along *x*, but loose the periodicity along *y*

We look for the eigenstates as Bloch functions for x

$$|\Psi\rangle = \sum_{j,l} C_l \, \mathrm{e}^{\mathrm{i}jaq_x} |w_{j,l}\rangle$$

Recursion equation (Harper) for the coefficients C_l

Important particular case when the coefficient α is rational, $\alpha = p'/p$ One then recovers periodicity along y, but with the period pa instead of a.

$$e^{i2\pi\alpha l} = e^{i2\pi\alpha(l+p)}$$

Example for the flux $\alpha = 1/3$

Unit cell with 3 sites $|A\rangle, |B\rangle, |C\rangle$ of size $a \times 3a$

Look for eigenstates as Bloch functions:

General shape of the spectrum

Fractal structure, self -similarity

Dirac points for α = 1/2, 1/4, ...

Hall conductance of a filled band (fermions)

Transverse current: $\dot{N}_y = rac{1}{h} \Delta E_x$ corresponding to a single channel conduction

Generalization to insulator-type filling of any band structure: $\dot{N}_y = \frac{C}{h}\Delta E_x$ where *C* is an integer (Chern number) [Thouless et al, 1982]

What does one get for the lowest band of the Hofstadter butterfly?

 $\alpha = 1/p \quad \Rightarrow \quad C = 1$ "topologically equivalent to LLL"

How to calculate the Chern number?

Suppose that only the lowest band is filled

Bloch functions $\psi_{\boldsymbol{q}}(\boldsymbol{r}) = e^{i\boldsymbol{q}\cdot\boldsymbol{r}} u_{\boldsymbol{q}}(\boldsymbol{r}) \qquad u_{\boldsymbol{q}}(\boldsymbol{r}) \text{ or } |u_{\boldsymbol{q}}\rangle$: periodic part

Thouless et al (1982): linear response theory (Kubo formula) to calculate the current J_v for a given ΔE_x

Berry connection in quasi-momentum space: $\mathcal{A}(\boldsymbol{q})=\mathrm{i}\left\langle u_{\boldsymbol{q}}|\boldsymbol{
abla}_{\boldsymbol{q}}u_{\boldsymbol{q}}
ight
angle$

Associated Berry curvature: $\mathcal{B}(m{q}) = m{
abla}_{m{q}} imes \mathcal{A}(m{q})$

$$C = \frac{1}{2\pi} \int_{\mathrm{BZ}} \mathcal{B}_z(\boldsymbol{q}) \ \mathrm{d}^2 q = \frac{1}{2\pi} \oint \mathcal{A}(\boldsymbol{q}) \cdot \mathrm{d}\boldsymbol{q}$$

Integer number: robust property that can be changed only with a contact between two bands

In cold atom physics, the Berry curvature $\mathcal{B}(q)$ can be measured locally thanks to the Bloch oscillation technique

Physical interpretation of the Chern number

Apply a force F associated with the energy difference $\Delta E_x = FL_x$

Bloch oscillations along x with the period

$$\tau_{\rm B} = \frac{h}{Fa}$$

During one Bloch period, how many particles do cross a segment of length *a* ?

$$\delta N = a J_y \tau_{\rm B}$$

$$= a \frac{1}{L_x} \left(\frac{C}{h} \Delta E_x \right) \left(\frac{h}{Fa} \right)$$

$$= C \qquad \text{Chern number}$$

Outline

1. Gauge fields on a lattice

2. Hofstadter butterfly

3. Shaken lattices

How to obtain non real tunnel matrix elements

Non exhaustive presentation. There are also approaches based on "rotating" the lattice: Sorensen et al (2005), Tung et al (2006), Hemmerich et al (2007), Kitagawa et al (2010)

Goldman, Juzeliunas, Ohberg, Spielman, arXiv:1308.6533

4. Lattices combining several internal states

Goal of this approach

Lattice modulated in time

One wants to use the different parameters of the modulation

- amplitude
- frequency
- phase

to engineer the tunnel matrix elements $\ J \ \longrightarrow \ J \, {
m e}^{{
m i} heta}$

Systematic approaches to this type of problem:

- Floquet formalism
- Effective Hamiltonian: Rahav et al (2003); Goldman & Dalibard, arXiv 1404.4373

Here, we will use a simple treatment based on a (non-rigourous) time-average of the Schrödinger equation

Modulated 1D lattice

Unitary transform $\hat{U}(t) = \exp\left(ix_0(t)\hat{p}/\hbar\right)$ that allows one to go from

$$\hat{H}(t) = \frac{\hat{p}^2}{2M} + V[x - x_0(t)] \quad \text{to} \quad \hat{H}(t) = \frac{[\hat{p} - A(t)]^2}{2M} + V(x) \text{ with } A(t) = M\dot{x}_0(t)$$

Tight-binding approach:
$$\hat{H}(t) = -J e^{iMa\dot{x}_0(t)/\hbar} \sum_j |w_{j+1}\rangle \langle w_j| + h.c.$$

The Schrödinger equation for the state vector $|\Psi(t)\rangle = \sum_{j} \alpha_{j}(t) |w_{j}\rangle$ leads to $i \hbar \dot{\alpha}_{j} = -J \left(\alpha_{j+1} e^{-i Ma \dot{x}_{0}(t)/\hbar} + \alpha_{j-1} e^{+i Ma \dot{x}_{0}(t)/\hbar} \right)$

Two time scales: fast motion $\dot{x}_0(t)$, slow motion J/\hbar . A temporal average then gives:

 $i\hbar\dot{\alpha}_{j} = -\bar{J}^{*}\alpha_{j+1} - \bar{J}\alpha_{j-1}$ average matrix element: $\bar{J} = J \langle e^{iMa\dot{x}_{0}(t)/\hbar} \rangle$

Changing the amplitude of the tunnel coefficient

$$\bar{J} = J \langle \mathrm{e}^{\mathrm{i}\,Ma\dot{x}_0(t)/\hbar} \rangle$$

Eckardt, Weiss, Holthaus (2005)

Experiment in Arimondo's group (Pisa, 2007) : sine modulation

$$\frac{Ma}{\hbar}\dot{x}_0(t) = \xi_0 \,\sin(\Omega t + \phi) \quad \longrightarrow \quad \bar{J} = J \langle e^{i\,\xi_0\,\sin(\Omega t + \phi)} \rangle = J \,\mathcal{J}_0(\xi_0)$$

Bessel function

Allows one to change the sign of the tunnel coefficient, but not its phase

Changing the phase of the coefficient tunnel (version 1)

 $-4k_{FB7}$

Equivalent of a constant vector potential: shift of the minimum of the dispersion relation that can be measured in a time of flight experiment

-2k_{∈B7} $4k_{FBZ}$ Κ

0

 $2k_{FB7}$

Struck et al, Hamburg 2012

Changing the phase of the tunnel coefficient (version 2)

Back to a sine modulation $\frac{Ma}{\hbar}\dot{x}_0(t) = \xi_0 \sin(\Omega t + \phi)$

Try to print the phase ϕ of the modulation on the tunnel coefficient

- Until now we saw $\overline{J} = J \mathcal{J}_0(\xi_0)$, which does not work.
- But one can also produce $\ \bar{J} = J \ \mathcal{J}_1(\xi_0) \ \mathrm{e}^{\mathrm{i}\phi}$ using a resonance !

Step one: superimpose a uniform force *F* to the lattice.

Energy offset of two adjacent sites $\hbar\Omega_0$

Step two: modulate at $\Omega \sim \Omega_0$

Kolovsky (2011)

Use a resonance (continued)

Look for the state vector as

$$|\Psi(t)\rangle = \sum_{j} \alpha_{j}(t) e^{ij\Omega_{0}t} |w_{j}\rangle$$

Schrödinger equation

$$\mathrm{i}\,\hbar\,\dot{\alpha}_{j} = -J\left(\alpha_{j+1}\,\mathrm{e}^{-\mathrm{i}\,(Ma\dot{x}_{0}(t)/\hbar - \Omega_{0}t)} + \alpha_{j-1}\,\mathrm{e}^{+\mathrm{i}\,(Ma\dot{x}_{0}(t)/\hbar - \Omega_{0}t)}\right)$$

For $\frac{Ma}{\hbar}\dot{x}_0(t) = \xi_0 \sin(\Omega t + \phi)$ and $\Omega = \Omega_0$, the average tunnel coefficient is :

$$\bar{J} = J \langle \mathrm{e}^{\mathrm{i}[\xi_0 \sin(\Omega t + \phi) - \Omega_0 t]} \rangle = J \langle \sum_n \mathcal{J}_n(\xi_0) \mathrm{e}^{\mathrm{i}n(\Omega t + \phi)} \mathrm{e}^{-\mathrm{i}\Omega_0 t} \rangle$$

 $ar{J}=J\,\mathcal{J}_1(\xi_0)\,\,\mathrm{e}^{\mathrm{i}\phi}$ OK for this 1D model (mere gauge transform)

Going to two dimensions

Non-symmetric modulation

Can be used for a triangular lattice (does not work if the sides of the unit cell are parallel)

Resonant modulation

Can be adapted to a square lattice to produce a uniform flux, with some subtleties ...

Munich 2013, MIT 2013