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Outline

4. Lattices combining several internal states
Laser assisted tunnelling

Flux lattices

Dalibard, Gerbier, Juzeliunas, Ohberg, Rev. Mod. Phys. 83, p.1523 (2011)
Goldman, Juzeliunas, Ohberg, Spielman, arXiv:1308.6533



Ruostekoski et al., 2002

Laser assisted tunnelling

Atom with two internal states |g), |e)
Ladder geometry with two parallel 1D lattices
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The coupling with the laser induces a jump of the
atom from one side of the ladder to the other one

|gawj> — |€,'UJj>

Tunnel matrix element along the line j :
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laser phase overlap of Wannier
on line j functions for |g) and |e)

a can be “fictitious”: Celi et al. (2014)



Laser assisted tunnelling (continued)
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Phase accumulated on a unit cell
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© can take adjustable values between 0 et 277, by controlling
the angle of the coupling laser with the axis y.

Laser



Extension in two dimensions

Staggered flux : on a given line,
from left to right, the phase of the
tunnel coefficient oscillates

between

+7 kb for |g) — |e)

and

—j kb for |e) — |g)

One can rectify this flux with slightly more complicated schemes

Jaksch & Zoller (2003), Gerbier & Dalibard (2010)



Is it worth using internal atomic states?

Difficulties associated to the simulation of lattice magnetism:
* transitions to higher bands (not taken into account here)

* heating due to the shaking

For a tilted+shaken lattice * to avoid interband transitions: 0y < A

rV(z) - Fx * to avoid heating due to shalfing, good
hierachy in the time scales: J ~ J < )

The resonance condition ) = )y then imposes

J < Q < A :small tunnel coefficients...

For tunnelling between different internal states:

Only one inequality to fullfill:  J ~x < A

but inelastic collisions between various internal states can create other difficulties



A different approach to artificial magnetism: Flux lattices

Reminder: two-level atom in a light field, Rabi frequency «, detuning A
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What happens in a static fully periodic lattice ? y
A
2,0, : periodic functions of x,y
A= 2(1 — COS e)ﬁgb is also periodic, hence one expects naively
%E-JZ:O //Bz(x,y)da:dy:o
C
Correct only if A has no singularity in the unit cell s
X

Singularities of A can occur at any point where sin # vanishes: ¢ undefined




An example of flux lattice (Cooper 2011)
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Singularities for A in points where cos(kz) = 0 and cos(ky) =0

+7T

é é //Bz(:v,y)dwdyz—ﬂh > sign(j)

singular j

ky

SIATAY
-JT k +

X n

Py , T COS KT, y COS RY




How to operate a flux lattice?

Tight binding limit ? Because of the relation // B.(x,y) dedy = —7h Z sign(j)

singular j

there is an integer number of flux quanta per plaquette: not so interesting

Leaving the tight binding limit hQ) ~ Elecoil

The adiabatic approximation becomes questionable and one has to

~2 —id o
calculate the band structure of T héd cos 6 e '¥sinf
2M 2 \e?sinf —cosf

Look e.g. at the lowest band n =0:

* should be as flat as possible:
Mimic the degeneracy of Landau levels, increase the role of interactions

* should possess “magnetic properties”, characterized by its Chern index C



Realistic example for alkali atoms

:gcc

Cooper & Dalibard 2011

Raman coupling between

N

two ground states
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Lowest band : Chern index=+1, width=0.01 recoil energy

Gap above the lowest band: 0.4 recoil energy



Summary of some methods for simulating orbital magnetism

Goal : Reach a given cyclotron frequency w. or spin-orbit coupling

Time-independent Time-dependent

. . Hamiltonian
Hamiltonian
frequency Q2
No use of Rotation with conserved Rotation with a stirrer
internal states angular momentum

Shaken lattices

Berry’s phase based schemes
Use of Flux lattices

internal states Laser assisted tunnelling

Spin-orbit coupling

Spin-orbit coupling




Lecture 3 :
Artificial magnetism and interactions

Discussion for the case of a rotating Bose gas, with the single-particle Hamiltonian

~ 2

A P 1 . - . .
H = W + §Mw2r2 — QL. in the rotating frame

Can be extended to any other simulation of uniform magnetism, taking

Cyclotron frequency Rotation frequency
0) € > Q=w./2

c



Outline of this part

1. From the standard vortex lattice to the mean-field lowest Landau level (LLL)

2. Beyond mean-field: quantum-Hall like states

Fetter, Rev. Mod. Phys. 81, p. 647 (2009)
Cooper, Advances in Physics, 57, p. 539 (2008)
Bloch, Dalibard, Zwerger, Rev. Mod. Phys. 80, p.885 (2008)



Rotation and “standard” vortex lattices

Standard response of a superfluid to rotation

21t phase winding around each vortex 72
* VVortex core size: healing length & with p = INE?

Baym-Pethick
Dalfovo-Stringari

Number of vortices N, ?

Answer from Feynman: compare the quantum velocity field v = — V[phase]
. : M

and the expected one for a classical fluid v = 2 x r

h
Along a circle of radius R: ]{’U -dr = MZT‘-N’U < > 21QR?
MQR? Lo Ny MO
N, = - vortex density: Py s 7

Checked experimentally at MIT



The limit of fast rotation
>

s

Rotating condensate

|
i

Condensate at rest

Rotation frequency Q@ ———> Trap frequency w

1
The effective trapping potential is reduced by the centrifugal potential: iM (w2 — 92) 2

* The cloud density goes down.
* The healing length & (core size) goes up. MQ Muw

* The vortex density tends to a constant (Feynman): p, = R
mh mh

The limit prQ 2 1 orequivalently u < hw corresponds to the entrance in the LLL regime

Ho, 2001
Cooper, Komineas, Read, 2004
Fischer, Watanabe, Baym, Pethick, 2004

Aftalion, Blanc, Dalibard, 2005
Matveenko, Kovrizhin, Ouvry, Shlyapnikov, 2009



Single particle states for 2 — w

Harmonic trap at €2 = 0

Tl

Add —Q L, = —mhf)

to go in the rotating frame

ng =3
ng = 2
ng =1
ng =20

Harmonic trap for ) ~ w

m=—-2 -1 0 +1 +2 43

The limit 4 < hw corresponds to
a restriction to the lowest Landau level
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LLL states

: 2 2
— Eigenstates : ¢ (r, @) oc ™ e e /201

m —r?/2a%

=u"e
LLL
1 2 3 _4. with: uw = +1y
T \ a| =/ h/Mw
rel¥ g /201 o' o1 /201
General LLL wave function : ¢(r Z A m () = P(u) e " /291
polynomial : P(u) = Zamum = H (U — Up,)
m m=1

Around the root u,, of the polynomial, the phase rotates by +2x : vortex !

In the LLL, it is equivalent to specify the wave function
(coefficients «,,) or the vortex positions (roots u,)

The vortex core size is similar to vortex separation



Aftalion, Blanc, Dalibard

Ground state in the LLL (mean field)

h
Two-dimensional problem: interactions described by a contact potential 7Y 5(2)('r)

a a : 3D scattering length
Dimensionless constant g = v 38m — 7
L a, : “thickness” along the z direction = 4/ ——

Typical values: g between 0.01 to 1

Three dimensionless parameters:
N, g, Q/w
but only one relevant parameter:

10 F

Example for A = 3000 ——> _10:_

Regular lattice at center
Inverted parabola shape typical of Thomas-Fermi regime with Rrp AL/4

Vortex number: N, oc A/2



Experiments in the LLL

Boulder : evaporative spin-up method, which allowed to reach

2 =0.993w

Fractional core area of the vortices €2 : good agreement with the predictions

0.3r{=0.37 0=0.976
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100 000 Rb atoms, the trap is effectively 2D once rotating



Outline of this part

2. Beyond mean-field: quantum-Hall like states

Melting of the vortex lattice, Laughlin state, ...

Fetter, Rev. Mod. Phys. 81, p. 647 (2009)
Cooper, Advances in Physics, 57, p. 539 (2008)
Bloch, Dalibard, Zwerger, Rev. Mod. Phys. 80, p.885 (2008)



Limits of the LLL mean-field theory

Number of particles : N
Number of single-particle states that are effectively occupied = number of vortices

N, ~ AY? ~ Ng v
? 1 —-Q/w

When N, ~ N, one can significantly lower the ground state energy by
considering correlated states ¥ (ry,...,ryx) # ¥(r1)... ¥ (ry)

M= h(,u N — N,U
o ! 0
| | vortex lattice | LLL I LLL s
' ! with £ <a; ' mean field ' correlated
0 Q. 1 g W
_ 1 _ _)
W (1 gN) W ( N

valid for a weak-enough interaction: g < 1



How to find these correlated states?

A2 2
. : 1 h
Ground state of H = E <2p]\14 + 2Mw2'f°?> + 27 9 g 53 (r; —

) 1<J
for a given total angular momentum L

LLL: P(7ry,72,...,7N) = P(ur,us,...,un) exp(— ZT2/2aL

where P is a symmetric polynomial of the variables w1, us, ..., uy u; = x; + 1y,
Forexample N =2, £L=2: P(ui,u2) = a(ui + u3) + Suius

Generally, sum of  u{" ... uRY E ;=



Cooper, Wilkin, Gunn
A few remarkable configurations Sinova, MacDonald, et al

Lewenstein, Barberan, et al

N
==p \When N, ~ 0 the vortex lattice melts because of quantum fluctuations

=P \When N, = 2N or more precisely mmax = 2N (filling factor %), Laughlin state

Prau. (U1, ug,...,un) = H(Uz — uj)2 total polynomial degree:
i<j L=N(N-1)

Never two particles at the same place: strong correlations!

. : .. R?
Zero interaction energy for a contact potential: i g Z 5(2>(ri —7;)
i<
Separated by a gap from all other states with the same angular momentum

Egap = 0.1 g hw Regnault-Jolicoeur

=P When N, = N or more precisely mmax = N (filling factor 1),
Moore-Read (Pfaffian) state (never 3 particles at the same location)

Egap ~ 0.05 g hw Chang et al.



Similar study for atoms in a flux lattice
with a very narrow lowest band

Band width: 0.015 E Gap: 0.7 Ex

Calculation of the gap as function of the interaction strength g

% [E(N +1)+ E(N —1) —2E(N)]

Filling factors 72 and 1

003 —
0.02 Incompressible states
3 even for moderate
EL interaction strength
0.01

04

0

| | |
02 04 06 038

Cooper & Dalibard
PRL 110, 185301 (2013)



How can one detect these correlated states?

==p Reduction of inelastic losses

Laughlin state: never two particles at the same location

=P Gap between the ground state and all excited states

Flat density profile for a Laughlin state in a harmonic potential
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Roncaglia, Rizzi, Dalibard,
calculation for 9 particles




How can one detect these correlated states (continued)?

== Detection of individual atoms after a time-of-flight % X %

Reconstruction of spatial correlation functions x x

=P Quest for non conventional statistics [anyons, (Wilczek, 1982)] for the excited
states of these fluids

Paredes et al.

—> create two excitations (holes)
with two laser beams

x —> rotate one excitation around
the other one

—> Detect the accumulated phase




Conclusions

We now have a vast range of tools to simulate a one-body Hamiltonian
with magnetic properties

Subtle topological states can be evidenced in this way

A (very) big challenge is to produce strongly correlated states with
these one-body Hamiltonians + interactions

Would allow one to address important open
questions on topological quantum matter



