

Energy, Environment and Public Health

Rainer Friedrich

Institute for Energy Economics and the Rational Use of Energy – IER University of Stuttgart

Joint EPS-SIF International School on Energy 2014 Varenna 17 - 23 July 2014

R

Health risks of fine particles, NO₂ (?) and ozone proven by epidemiological studies

- Highest health risks due to ,chronic mortality' caused by PM2.5
- 1. study: Dockery, Pope et al.: an Association between Air Pollution and Mortality in Six U.S. Cities, Dec. 1993
- Newest studies and meta-studies: EC 7th FP project ESCAPE; WHO/REVIHAAP (Review of evidence on health aspects of air pollution) and WHO/HRAPIE (Health risks of air pollution in Europe),

Pollutant	Relative Risk (95% C.I.) All cause natural mortality >30 years
PM2.5 (per 10 µg/m3)	1.062 (1.04-1.083)
NO2 (per 10 μg/m3) above 20 μg/m3	1,055 (1,03-1,080) up to 33% overlap

WHO: all PM2.5 content (except sea salt?) equally toxic

Universität Stuttgart Institut für Energiewirtschaft und Rationelle Energieanwendung

Combustion of Fossile Fuels

fuel	EU limits of sulfur content in weight-%
heavy fuel oil residual oil – ships (IMO)	< 1,0 since 2003 < 4.5%, effectively 2.7%; since 2012; <3.5%;
EU passenger ship	since 2020/2025: < 0,5 %; SECAs = North and Baltic sea< 1%; as of 2015 0,1% from 2010 in harbours < 0,1%
light fuel oil	< 0,2 <i>(since 2003)</i> < 0,1 (since 2008) < 0,005 in Ger, voluntary agreement since 2009
gasoline	< 0,015 (since 2000) < 0,005 (since 2005),< 0,001 from 2009
diesel • road vehicles	< 0,035 since 2000, 98/ 70 EG)
	< 0,005 Since 2005, 98/ 70 EG), < 0.001 since 2009
inland water ships, rail	< 0,1 (since 2008)
kerosene (air planes)	< 0,3; real value 0,03
wood	Not detectable
tree bark	< 0,15
natural gas	0,0005 - 0,02
lignite	1
hard coal	0,9 -1.1

Air Quality Management

Flue gas desulphurisation Lime scrubbing

 $\mathrm{Ca(OH)_2} + \mathrm{SO_2} + \mathrm{H_2O} + \mathrm{1/2} \ \mathrm{O_2} \! \rightarrow \! \mathrm{CaSO_4} \cdot \mathrm{2H_2O}$

Source: Baumbach 1996

Share of total emissions (EU27) of SOx in 2010

- Energy production and distribution
- Energy use in industry
- Road transport
- Non-road transport
- Commercial, institutional and households
- Industrial processes
- Solvent and product use
- Agriculture
- Waste
- Other

Data source: National emissions reported to the Convention on Long-range Transboundary Air Pollution (LRTAP Convention)

Total amount of SOx for EU27: 4574 Gg (kt)

Material damage: Corrosion of metals;

With suluric acid:

- $Fe + H_2SO_4 + H_2O -> FeSO_4H_2O + H_2$
- **Decomposition of lime stone**

 $CaCO_3 + SO_4^{2-} + 2 H^+ + H_2O \rightarrow CaSO_4 \cdot 2H_2O + CO_2$

IER

<u>NO_x – the most important impact pathways</u>

Three processo	es for generating NOx duri	ng combustion
Thermal NO _x	Fuel – NO _x	Prompt NO _x
N ₂ from air used for combustion, N ₂ + O → NO + N N + O ₂ → NO + O High emissions, if: high temperature in the flame > 1300 C° excess oxygen residence time in the high temperature zone	N bound organically in the fuel > 750 C° Nitrogen content von coal: 0,5 – 2 mass % fuel oil: 0,1 – 0,6 mass % Transformation rate: coal: 20 – 40 % fuel oil: 80 – 90 %	N from combustion air, mechanism not fully understood $CH + N_2 \rightarrow HCN + N$ $C_2 + N_2 \rightarrow 2 CN$ Oxidation to NO

Air Quality Management

Secondary Measure for gasoline cars: three way - catalytic converter

IER

Share of total emissions (EU27) of NOx in 2010

- Energy production and distribution
- Energy use in industry
- Road transport
- Non-road transport
- Commercial, institutional and households
- Industrial processes
- Solvent and product use
- Agriculture
- Waste
- Other

Data source: National emissions reported to the Convention on Long-range Transboundary Air Pollution (LRTAP Convention)

Total amount of NOx for EU27: 9162 Gg (kt)

Photochemical reaction generating ozone

NO₂ + hv (
$$\lambda \le 420 \text{ nm}$$
) → NO + O
O + O₂ + M → O₃ + M
(M = energy absorbing molecule such as N₂, O₂
NO + O₃ → NO₂ + O₂

Equilibrium -> no increased ozone concentration

Generation of the OH Radical

- $O_3 + h_V (\lambda < 320 \text{ nm})$ \swarrow $O(^1D) + O_2$
- $O(^{1}D) + H_{2}O \ge 2 OH$
- $R-H + OH \implies R + H_2O$
- c(OH) = 10⁶ molecules per cm³

Universität Stuttgart Institut für Energiewirtschaft und Rationelle Energieanwendung

IER

Contribution of VOCs to the generation of ozone: Oxidation of NO to NO₂

OH-radicals break up VOCs and CO:

OH• + RH \longrightarrow H₂O + R OH• + CO \longrightarrow CO₂ + H Organic remainder R forms peroxiradical with oxygen (HO₂ or RO₂):

peroxiradicals oxidise NO to NO₂:

 $\begin{array}{cccc} \mathsf{RO}_2 \bullet + \mathsf{NO} & \longrightarrow & \mathsf{NO}_2 + \mathsf{RO} \bullet \\ \mathsf{HO}_2 \bullet + \mathsf{NO} & & & \mathsf{NO}_2 + \mathsf{OH} \bullet \end{array}$

N-atmospheric chemistry – during the day

2000

Most significant emission sources in Germany year

20 processes emitting 74 % of anthropogenic PM2.5

	PM10 [t]	PM2,5 [t]
Small combustion households - wood	18427	17111
Other mobile sources agriculture - diesel engines	15580	14760
Road traffic passenger cars - diesel engines	7913	7571
Other mobile sources construction - diesel engines	7600	7200
Road dust suspension	25423	6411
Commercial and residential barbecues	6164	6164
Cement production	7215	4466
Public power plants - lignite	5024	4217
Sinter production	8728	4192
Road traffic light duty vehicles - diesel engines	4221	4039
Marine ships - heavy fuel oils, diesel	4293	3993
Road traffic lorries w/o trailer - diesel engines	4147	3968
Oxygen steel production	4373	3887
Public power plants - hard coals	4286	3709
Pig iron production	13399	3594
Road traffic lorries with trailer - diesel engines	3731	3570
Road articulated lorry - diesel engines	3651	3493
Small combustion commercial - wood	2803	2438
Small combustion households - coal	2437	2285
Fireworks	2589	1726

Smoking: 1 300 t

PM2.5

Electrostatic Precipitator for removing dust from the flue gas

Air Quality Management

Technical options for the removal of PM from exhaust gas - set-up of a tubular bag filter

Source: Baumbach 1996

Funktionsweise des Diesel-Partikelfilters Operating principle of the diesel particulate filter

IER

WAST

Air Quality Management

Share of total emissions (EU27) of PM10 in 2%

Energy production and distribution

- Energy use in industry
- Road transport
- Non-road transport
- Commercial, institutional and households
- Industrial processes
- Solvent and product use
- 2% Agriculture
 - Waste
 - Other

Data source: National emissions reported to the Convention on Long-range Transboundary Air Pollution (LRTAP Convention)

Total amount of PM10 for EU27: 1969 Gg (kt)

Share of total emissions (EU27) of PM2.5 in 2010

- Energy production and distribution
- Energy use in industry
- Road transport
- Non-road transport
- Commercial, institutional and households
- Industrial processes
- Solvent and product use
- Agriculture
- [%] ■Waste
 - Other

Data source: National emissions reported to the Convention

on Long-range Transboundary Air Pollution (LRTAP Convention)

Total amount of PM2.5 for EU27: 1333 Gg (kt)

ng ER

Composition of the anthropogenic PM10 concentration – rural background

[•]IER

Generation of secondary aerosols

Universität Stuttgart Institut für Energiewirtschaft und Rationelle Energieanwendung

Relation between particle size (x- axis) and atmospheric life time (y-axis, in days)

Separation rate of inhaled particles in the human respiratory tract, depending on its diameter

Separation rate > 50% in Nasal mucus skins and pharynx > 10 μm Larynx >4.7 – 5.8 μm

Airpipes and main bronchia > 3.3 – 4.7 μm

Secondary and terminal bronchia > 1.1 – 3.3 μm Alveoli

< 1.1 μm

Source: Umweltforschung

Journal 2004

Mechanisms of how Particles Effect Human Health

Universität Stuttgart Institut für Energiewirtschaft und Rationelle Energieanwendung

DALYs caused by one year of emissions of air pollutants in Europe (except NO2 impacts)

Universität Stuttgart Institut für Energiewirtschaft und Rationelle Energieanwendung

DALYs due to all stressors for ,2020 Climate'

DALYs due to stressors 2020 Climate scenario (log scale)

Stressors types

1 If no additional measures to improve air exchange rate in buildings are implemented. 2 Results from the Exiopol project.

C) Nuclear accidents

Generation of Energy with Nuclear Fission Fission of the nucleus of an uranium – U²³⁵ atom

Thermal power of a nuclear reactor after shut down

100 s	ca. 160 MW
300 s	ca. 110 MW
10 min	ca. 90 MW
1 h	ca. 64 MW
24 h	ca. 52 MW

Because of radiation stemming from

- Fission products: e.g. Strontium90 (28 a), Jod 131 (8 a), Jod133 (20 h)
- Activated material: by irradiation of of the reactor container, e.g. Fe59, Co60
- Conversion products (Pu239)

Emergency cooling system (example: Break in the main coolant line)

- 1) Use accumulator tank F (high pressure)
- 2) Use flood tank G
- 3) Pump water from reactor sump

Core Melting

- Heating and vaporisation of remaining water
- >1200°C: production of hydrogen caused by oxidising the zirkaloy of the cladding tube
- Melting of cladding tubes and content of tubes (

Pathways to the release of radioactive substances

- 1) Heating -> pressure increases -> controlled pressure release through filter
- 2) Hydrogen oxidisation / explosion of the oxygen hydrogen mixture (catalytic recombiners in containment)
- 3) Water vapour explosion (concrete structure)
- 4) Molten radioactive substances melt through the concrete at the bottom of reactor

Estimation of health impacts caused by nuclear accident in Southern Germany; impacts occur within 200 years after accident

Type of	Early impacts	Latent health risks				
accident	Immediate fatalities	Collective dose pers.Sv	Fatal cancers	Non-fatal cancers	Genetic defects	
DRSB 1	164	1,04 10 ⁶	52 000	124 800	10 400	
DRSB 2	63	6,4 10 ⁵	32 000	76 800	6 400	
DRSB 3	-	1,7 10 ⁵	8 500	20 400	1 700	
DRSB 4	-	6,1 10 ⁴	3 050	7 320	610	
DRSB 5	-	6,8 10 ³	340	816	68	
DRSB 6	-	6,8 10 ²	34	82	7	

For comparison: in total 22 Mio deaths from cancer (all causes) in Germany over 100 years source Riskostudie B, 1989

Area for evacuation and resettlement after a large nuclear accident

(berechnet mit RODOS, Quelle: Bundestagsdrucksache 17/2871)

Weather:		Area for evacu-	Equal to circle with	Area for resetlle-	Equal to circle
precipitation.	speed	ation km ²	radius	ment km ²	with
strong variing	drav	110	<u>KIII</u> 6	80	raulus Kill
strong varmig	ury	110	0	00	3
strong constant	dry	500	13	400	11
moderate variing	dry	270	9	160	7
moderate constant	dry	900	17	1200	20
weak variing	dry	500	13	350	11
weak variing	dry	800	16	700	15
strong variing	1 mm/h	4800	39	22900	85
strong constant	1 mm/h	5800	43	9900	56
moderate variing	1 mm/h	4500	38	15600	71
moderate constant	1 mm/h	3000	31	6200	44
weak variing	1 mm/h	4300	37	10100	57
weak constant	1 mm/h	1500	22	2700	29

Population around nuclear power plants in Germany (in 1000 persons)

Radius	10 km	20 km	30 km	40 km
Biblis A	126	568	1580	2724
Gundremmingen B	43	196	514	1092

Total damage ca. 250 billion € to 2000 billion € per accident with large release of radioactive substances, using willingness to pay and material damage. Compensation much smaller (estimation of requests for compensation to TEPCO for Fukushima accident ca . 25 – 90 billion €)

For comparison: GDP (gross domestic poduct) of Germany: 2 500 billion €/ a;

F-N Curves: Latent Cancer Fatalities (LCF) for current nuclear power plants and EPR (European Pressurized Reactor)

Frequency and Fatalities due to large accidents 1970 – 2005, source: Hirschberg, PSI

High probability for LPG (liquid petrol gas) and in coal mines in China.

 Break of dams in developing countries may cause thousands of deaths, last break of a dam in OECD countries > 1000 deaths 1963 in Vaiont, Italy; 1917 deaths).
 source: Hirschberg, PSI

Risk of a large nuclear accident:

- Risk = frequency * damage = expectation value of damage
- Frequency: with PSA: 10⁻⁷ bis 10⁻⁸ /(year and plant) statistical frequency: 10⁻⁴ /(year and plant)
- Individual risk ca 10⁻¹¹/a*plant resp. 10⁻⁸/a*plant
- ➤ Rough estimation of damage : 450 1 000 billion € per large accident (including intangible costs)
- Risk with PSA: (0,45 1* 10¹² €)* (10 -7 /a 10 -8 /a) / (9,4 * 10⁹ kWh/a) = 0,000021 0,0000027 €/kWh, for EPR Factor 1000 maller
- Risk with statistical frequency: (0,45 bis 1* 10¹² €)* (10 -4 /a) / (9,4 * 10⁹ kWh/a) = 0,01 0,005 €/kWh
- \rightarrow Low expectation value of damage

Assessment as Damocles risk/ social risk

- High damage with very low probability (a Damocles risk) is seen as worse than the same risk, but with lower damage and higher probability by many people (risk aversion)
- Approaches to address this quantitatively: Switzerland: Factor 100

Netherlands: tolerable risk 10^{-3} /N² (N = number of deterministic fatalities), not for probabilistic damages (e.g. nuclear accidents),

- No discussion or decision in most countries (e.g. Germany).
- In Germany law that forbids nuclear phase out -> obviously seen as intolerable risk.
- Leads to reduction of social/Damocles risks, but increases health impacts and has negative economic and social impacts.

4) Integrated Assessment for Supporting Decision Making with Multiple Criteria

 Why quantitative assessment and comparison of impacts, risks and benefits of options?

• Integrated Assessment (IA): a multidisciplinary process of synthesizing knowledge across scientific disciplines with the purpose of providing all relevant information to decision makers to help to make decisions.

How do we form opinions and make decisions?

• We have two mechanisms

The intuitive system produces answers/opinions qickly and effortlessly. It works automaticly and unconsciously.

The logical system tries to collect information, measures, checks and considers, but needs will power and high efforts. It can not deal with more than one issue and is exhaustible.

Usually we think, that our opinions and decisions are based on using the logical system, but we use the intuitive system.

-> problems with the intuitive system

Problems with decision making with our ,intuitive system:

- Opinions are based on the readily available information even if important information is missing; coherence of the information (a good story) more important than quantity, quality and completeness.
- Framing effect the presentation of information influences the opinion
- HALO effect: one positive (negative) characteristic of a person influences the perception of the other characteristics of a person
- Complex questions are unconsciously replaced by simpler questions
- Decisions/opinions of others (peers) influence our decisions/ opinions.

Problems with Risk assessment

- Low probabilities/frequencies are weighted over proportionally (risk aversion)
- Losses are seen as worse than gains
- Frequencies are estimated using the easiness of remembering an example for the damage.

Thus:

 At least for public decisions a quantitative assessment/decision support system necessary

How to assess environmental impacts?

Use of environmental pressures (emissions) for the assessment not useful, as severity of the impacts per unit of release is not known, thus

no weighting/comparison between pressures and with economic and social indicators possible;

Pressures/ emissions can not be assessed.

Impacts (damage, risks) caused by the pressures should be estimated.

Integrated environmental impact assessment using the impactpathway- or full chain approach

To weigh risks and benefits quantitatively they have to be transformed into a common unit, e.g. a monetary unit

Assessment of impacts is based on the preferences of the affected well-informed population

Universität Stuttgart Institut für Energiewirtschaft und Rationelle Energieanwendung

The Impact Pathway Approach

Differences of Physical

Impacts

Pollutant Emissions

Transport and Chemical Transformation

monetary valuation

Calculation is made twice: with and without project!

Assessment of Risks to Human Health

Intolerable risk Tolerable risk, if larger benefit	Individual risks: 10 ⁻⁵ /a (HSE UK); 10 ⁻⁴ /a (AGS) 10 ^{-5/-6} /a (Netherlands)	Step 1: Inacceptable intolerable risks have to be avoided by all means (e.g. via thresholds, bans).
Broadly acceptable negligible risk	AGS = Ausschuss für Gefahrstoffe, HSE = Health and Safety Executive	Step 2: The assessment of tolerable risks is based on the measured preference of the affected well informed population.

Assessment of Damocles Risks (Societal Risks)

Risk = frequency * damage = expectation value of damage

Problem: very high damage with low probability often assessed as worse than same risk, but lower damage.

Currently there is no accepted methodology to include risk aversion, so the expectation value is used

(proposals in other countries: Switzerland: factor 100, the Netherlands: tolerable risk 10⁻³ /N²).

Monetary values of health endpoints (EUR 2010)

Health End-Point	Low	Central	High	per case
Increased mortality risk - VSLacute	1,121,433	1,121,433	5,607,164	Euro
Life expectancy reduction - Value of Life Years chronic	40,500	59,810	213,820	Euro
Sleep disturbance	400	1,045	1,320	Euro/year
Hypertension	740	800	930	Euro/year
Acute myocardial infarction	2,200	4,470	31,660	Euro
Lung cancer	69,080	719,212	4,187,879	Euro
Leukaemia	2,045,493	3,974,358	7,114,370	Euro
Neuro-development disorders	4,486	14,952	32,895	Euro
Skin cancer	10,953	13,906	26,765	Euro
Osteoporosis	2,990	5,682	8,074	Euro
Renal dysfunction	22,788	30,406	40,977	Euro
Anaemia	748	748	748	Euro

Values for Assessing Greenhouse Gas Emissions

[Euro 2010 per	2010	2015	2025	2035	2045	2050
tonne CO2 eq]						
MDC_NoEW	9	11	14	15	17	22
MDC meta analyis	24	26	32	39	48	58
Kyoto+	26	30	36	42	74	87
2° max	36	46	73	119	194	250

Kyoto/20%+ : fulfillment of the Kyoto aim 2010, 20% GHG reduction 2020 in EU and further considerable reduction after 2020

Max 2°: temperature increase of 2° not exceeded (source Kuik 2009)

MDC_NoEQ: quantifiable marginal damage costs without equity weighting, estimated with the FUND model develop by Tol

MDC meta analysis: meta analyis of studies estimating marginal damage costs (source Tol 2011)

An example for using the methodology :

- Objective: rank different electricity generation techniques according to their contribution to a sustainable energy system
- Main criteria for assessing the sustainability of electricity generation:
- 1) Risks for human health and biodiversity losses per kWh as low as possible – for the life cycle including as well normal operation as accidents
- 2) Greenhouse gas emissions per kWh as low as possiblefor the whole life cycle
- Generation costs per kWh as low as possible including costs for back up and storage

Universität Stuttgart nstitut für Energiewirtschaft und Rationelle Energieanwendung

Risks to human health per kWh [DALYs per kWh]

External Costs, Kyoto+ Scenario

Universität Stuttgart Institut für Energiewirtschaft und Rationelle Energieanwendung

External Costs, 2° max Scenario

Private Costs

- private costs = all costs per kWh borne by the electricity producer, but without taxes (VAT) and subsidies
- includes investment, operation and maintenance, fuel, supplies and services, dismantling, waste disposal
- Includes back-up costs (provision of reserve capacity), estimated by comparing scenarios of energy systems with and without the assessed technology with the same supply security
- estimation/projection of costs for plants built 2030

Electricity Generation Costs first year of operation ca 2025

Which Effects Are Not Included ?

- as agreed methods or reliable information are not available, though impacts on the result may be large :
- Assessment of Damocles risks (low probability- high damage risks) agreed method not available
- Risk caused by terrorism information not publicly available
- Visual annoyance large spatial and temporal variability, thus benefit transfer not possible
- Risk of carbon storage no quantitative information yet available

Security of supply for natural gas - methodology not available

25

Social costs 2025, Kyoto+ Scenario

average external costs and range private costs

Social costs of electricity 2025 2°max Scenario

Conclusions I

Lowest social costs for an ambitious climate policy (2° aim):

Nuclear, on shore wind, run-off water, lignite with CCS and natural gas.

However,

- nuclear (EPR now, Generation IV after 2030) not accepted in some countries due to risk aversion; progress in transmutation of wastes helpful
- wind and water have a limited potential, wind needs backup capacity or storage;
- supply security for natural gas is lower;
- environmental and economic risks of carbon storage yet uncertain.
- With a moderate climate strategy, lignite and hard coal without CCS will play a certain role.

Conclusions II

- Biomass burnt in smaller plants has relatively high external and social costs (and is anyway needed for the production of liquid fuels). The use of residual biomass in large plants might be a favourable option.
- Electricity production with solar plants in North and Central Europe tend to have high quantifiable social costs at least until 2020, but become competitive in Southern Europe. PV plants in Mediterranean countries would be the next best option with high potential.

- More information and tools:
- <u>www.externe.info</u>
- www.integrated_assessment.eu
- www.needs-project.org