Clean and dirty 1D quantum systems

T. Giamarchi

http://dqmp.unige.ch/gr_giamarchi/

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

Why one dimension ?

Three urban legends about 1D

It is a toy model to understand higher dimensional systems.

It does not exist in nature ! This is only for theorists !

Everything is understood there anyway !

So, why one dimension ?

Finding new functionalities /physics

(Y. Tokura, Japan)

Need to understand interactions !

10²³ particules + Interactions: Crucial fundamental problem ``non Fermi liquids'' tomorrow's materials

Ferroelectrics, High Tc, Manganites, Oxydes, Organics,, nanomaterials....

Reduced dimensionality

Future electronic

Need to worry about reduced dimensionality

Physics at the edge

Presence of edge (B. I. Halperin)

LaO/StO interface (JM Triscone et al.)

Quantum hall effect Topological insulators.... Superconductivity between insulators...

One dimension is specially interesting

• No individual excitation can exist (only collective ones)

Strong quantum fluctuations

 $|\psi| = |\psi| e^{i\theta}$

Difficult to order

A good reason to work on 1D

However, my personal reason for working on one-dimensional problems is merely that they are fun. A man grows stale if he works all the time on the insoluble and a trip to the beautiful work of one dimension will refresh his imagination better than a dose of LSD.

Freeman Dyson (1967)

Plan of the lectures (1)

Lecture 1: 1D basics

- What are one dimensional systems
- Universal physics in one dimension (Luttinger liquid)
- Some realizations with cold atoms or CM
- Effect of a lattice: Mott transition

Plan of the lectures (2)

- Lecture 2: 1D and beyond
 - More on the Mott transition (string order)
 - Fermions and Spins
 - Systems with internal degrees of freedom (spin)
 - Impurities in Luttinger liquids; Non Luttinger liquids
 - Between 1D and 2D : ladders
 - Some open problems for pure systems

Plan of the lectures (3)

- Lecture 3: Disorder
 - Disorder and noninteracting quantum systems (Anderson localization)
 - Disorder and interactions in quantum systems (dirty bosons): Bose glass
 - Disorder and quasiperiodicity
 - Loose ends and open questions

References

TG, arXiv/0605472 (Salerno lectures)

TG, Quantum physics in one dimension, Oxford (2004)

M. Cazalilla et al., Rev. Mod. Phys.83 1405 (2011) TG, Int J. Mod. Phys. B 26 1244004 (2012)

THIERRY GIAMARCHI

Lecture 1

What does "1D" means in the real (3D?) world

 $E = \frac{k_x^2}{2m} + \frac{k_y^2}{2m}$ $2\pi n$ $k_y =$ $\overline{L_y}$

Fine But does it exist ?

TG, Int J. Mod. Phys. B 26 1244004 (2012)

Organic conductors

D. Jaccard et al., J. Phys. C, 13 L89 (2001)

CARBON NANOTUBES

Quantum Wires

O.M Ausslander et al., Science 298 1354 (2001)

Spin chains and ladders

B. C. Watson et al., PRL 86 5168 (2001)

M. Klanjsek et al., PRL 101 137207 (2008)

B. Thielemann et al., PRB **79**, 020408® 2009

Control on the dimension

I. Bloch, Nat. Phys 1, 23 (2005)

Typical problem (e.g. Bosons)

•Continuum:

$$H = \int dx \frac{(\nabla \psi)^{\dagger}(\nabla \psi)}{2M} + \frac{1}{2} \int dx \, dx' \, V(x - x')\rho(x)\rho(x') - \mu \int dx \, \rho(x)$$

^(a)	^(b)
8-8-8-8-8-8-8- ///////	
p = 1	p = 2

•Lattice:

$$H = -J \sum_{\langle i,j \rangle} b_i^{\dagger} b_j + U \sum_i n_i (n_i - 1) - \mu \sum_i n_i$$

Standard" many body theory

Exact Solutions (Bethe ansatz)

Field theories (bosonization, CFT)

Numerics (DMRG, MC, etc.)

Luttinger liquid physics

Labelling the particles

$$\rho(x) = \sum_{i} \delta(x - x_{i})$$
$$= \sum_{n} |\nabla \phi_{l}(x)| \delta(\phi_{l}(x) - 2\pi n)$$

1D: unique way of labelling

$$\phi_l(x) = 2\pi\rho_0 x - 2\phi(x)$$

$$\rho(x) = \left[\rho_0 - \frac{1}{\pi} \nabla \phi(x)\right] \sum_p e^{i2p(\pi\rho_0 x - \phi(x))}$$

$\phi(x)$ varies slowly

$$\psi^{\dagger}(x) = [\rho(x)]^{1/2} e^{-i\theta(x)}$$

θ : superfluid phase

$$\left[\frac{1}{\pi}\nabla\phi(x),\theta(x')\right] = -i\delta(x-x')$$

Quantum fluctuations

Κ

$$H = \frac{\hbar}{2\pi} \int dx \left[\frac{uK}{\hbar^2} (\pi \Pi(x))^2 + \frac{u}{K} (\nabla \phi(x))^2\right]$$

Luttinger liquid concept

•How much is perturbative?

Nothing (Haldane):
provided the correct u,K are used

 Low energy properties: Luttinger liquid (fermions, bosons, spins...)

Correlations

$$\langle \psi(r)\psi^{\dagger}(0)\rangle = A_1 \left(\frac{\alpha}{r}\right)^{\frac{1}{2K}} + \cdots$$
$$\langle \rho(r)\rho(0)\rangle = \rho_0^2 + \frac{K}{2\pi^2} \frac{y_{\alpha}^2 - x^2}{(y_{\alpha}^2 + x^2)^2} + A_3 \cos(2\pi\rho_0 x) \left(\frac{1}{r}\right)^{2K} + \cdots$$

S(q,!) J.S. Caux et al PRA 74 031605 (2006)

Finite temperature

Conformal theory

