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Global CO,-Emissions from
Fossil Fuel Use and Cement Production
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Carbon Dioxide Impact Cascade

Larger & more frequent impacts of global warming

Y

Increase of global mean temperature

A

Increase of CO ,-concentration in the atmosphere

Y
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Time Evolution of Atmospheric CO , Concentration
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Observed Global Mean Surface Temperature Change

(a)

Temperature anomaly (°C) relative to 1961-1990
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We cannot explain temperature rise without
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Observed change in surface temperature 1901-2012
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Human influence has been detected in warming of the atmosphere and the ocean, in changes
in the global water cycle, in reductions in snow and ice, in global mean sea level rise, and
in changes in some climate extremes (see Figure SPM.6 and Table SPM.1). This evidence for
human influence has grown since ARA4. It is extremely likely that human influence has been
the dominant cause of the observed warming since the mid-20th century. {10.3-10.6, 10.9}

In this Summary for Policymakers, the following terms have been used to indicate the assessed likelihood of an outcome or a result: virtually certain 99—-100% probability,
very likely 90-100%, likely 66—100%, about as likely as not 33-66%, unlikely 0-33%, very unlikely 0-10%, exceptionally unlikely 0—1%. Additional terms (extremely likely:
95-100%, more likely than not >50-100%, and extremely unlikely 0-5%) may also be used when appropriate. Assessed likelihood is typeset in italics, e.q., very likely (see
Chapter 1 and Box TS.1 for more details).

IPCC AR5 W@
SPM (2013)
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Future Temperature Rise:
Climate Policy s Room for Manoeuvre

Global average surface temperature change
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RCP = Representative Concentration Pathway
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Two Lines of Argument behind
Global Warming Mitigation Policies

» Explicitly projected impacts of global warming
might be ‘too large’

* Precautionary principle

— beyond certain regimes knowledge too poor
to weigh costs and benefits



A Selection of projected Impacts..

Projection := Prediction, conditioned on
future human intervention
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Northern Hemisphere September sea ice extent
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(c) Northern Hemisphere September sea ice extent (average 2081-2100)
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Velocity of Climatic Zones & Coping Capacities of S
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Figure SPM.5 | Maximum speeds at which species can move acoss landscapes (based on observations and models; vertical axis on left), compared with speeds at which
temperatures are projected to move across landscapes {climate velodities for temperature; vertical axis on right). Human interventions, such as transport or habitat fragmentation,
can greatly increase or decrease speeds of movement. White baxes with black bars indicate ranges and medians of maximum movement speeds for trees, plants, mammals,
plant-feeding insects (median not estimated), and freshwater mollusks. For RCP2.6, 4.5, 6.0, and 8.5 for 20502090, horizonzal lines show dimate velodity for the
global-land-area average and for large fiat regions. Species with maximum speeds below each line are expected to be unable to track warming in the absence of human

intervention. [Figure 4-5]



One possible interpretation of the Precautionary Pr Inciple:
Avoid Historic Dimension of Temperature Rise

(‘Hot House’
(a) Global average surface temperature change ~ 55Miillion
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Past Sea Level vs. Temperature
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Past Sea Level vs. Temperature
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Carbon Emission Budget vs. Global Warming

Cumulative total anthropogenic COp emissions from 1870 (GICOs)
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Figure SPM.10 | Global mean surface temperature increase as a function of cumulative total global €O, emissions from various lines of evidence. Multi- S P M (2 O 1 3)
model results from a hierarchy of dimate-carbaon cycle models for each RCP untll 2104 are shown with cofoured lines and decadal means {dots). Some
decadal means are labeled for darity (e.q., 2050 indicating the decade 2040-2049). Mode! results over the historical period (1860 to 2010) are indicated
in black. The cofoured plume illustrates the multi-model spread over the four RCP scenarios and Tades with the decreasing number of available models
in RCP8.5. The multi-model mean and range simulated by CMIPS models, forced by a €0y increase of 1% per year (1% yr' CO; simulations), Is given by
the thin blzck line and grey area. For a spedfic amount of cumulative CO, emissions, the 13 per year €0, simulations exhibit lower warming than those
driven by RCPs, which indude additional non-CQy forcings. Temperature values are given relative to the 18611880 base period, emissions relative o

1870. Dacadal averages are connected by straight fines. For further technical details see the Tecnical Summary Supplemenitary Material. {Figure 12.45;
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The Coupled Climate-Socioeconomic System

Emissions

Socio-Economic System Climate System

Temperature
Impacts



Climate Policies

Mitigation

Emissions

Socio-Economic System Climate System

Temperature
Impacts

Adaptation



Window of Opportunity for Mitigation Policy

Climatic Benefits due to Mi-

Mitigation-resistent damages
/ Adaptation only

50 years

Window of opportunity for Mitigation
& 1stre-allocation effects through climate policy

2000 2025 2050 2075 2100
H Held



Driving Forces
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Assessing the Solution Space

30

Non-Fossil CO, Capture
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« For simplicity of didactics, we do not consider adaptation in
the remainder of today’s lecture...
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How much Mitigation is ,Optimal‘?

4+ Welfare (>century scale average)

Mitigation Effort

Ignoring iImmediate Shutdown
Global Warming of Emissions




An interdisciplinary Optimisation Problem
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An interdisciplinary Optimisation Problem
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An interdisciplinary Optimisation Problem
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Side-Remark:
What can we predict?

Atmosphere Biosphere Economic
/Ocean Dynamics Entities
Dynamics
Short-Term | Weather Ecosystem | Prices at
behaviour (?) | Stock market
Long-Term | Climate Carbon Patterns &
(~100 yrs) Cycle rates of
economic

growth




Weather Prediction vs Climate
Projection

Meteor. Variable #2
SR Predictive skill of weather prediction (‘forecast’):

‘ 3-14days

SSESAN
WSS
NAZZ2

Meteor. Variable #1

Prediction of components of the system’s trajectory.

38
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Weather Prediction vs Climate
Projection

Meteor. Variable #2

Meteor. Variable #1

If this weather attractor is quasi-stationary, a collection
of its statistical moments represents ¢hmate.

Warning: many def‘s of climate circulating.
39



Weather Prediction vs Climate
Projection

Meteor. Variable #2

?«,

If we add eg COto the system and
ISSNN DI thereby change the boundary
PS50 7 i conditions, the climate changes.

Meteor. Variable #1

Climate projection
.= prediction of climate change for a specified (and in most contexts
anthropogenically-driven) change in boundary conditions.

The related (conditioned) predictive skill is orcélmers of magnitude
larger than the predictive skill of weather forecast.



How much mitigation is desirable?
Cost Benefit Analysis: The standard tool of
environmental economics

Present-day Future
mitigation costs’ avoided damages



When to Invest How Much into
which Energy Technology?
Phrasing as a Control Problem

_ Investment decisions ‘Path’= Economists’
Investments In (control paths) lingo for time series’
\c(®)

e Renewables Emissions

» Efficiency

* Fossil Fuels Socio-Economic System Climate System

* CCS

Temperature
‘control
path’
Max!(¢(to).....c(c0)) Welfare := [ dt|Utility|(t)[(c(to), ..., c(t))] e~ **
to

‘Society’s Material Basis for Happiness’

‘Cost-Benefit-Mode’



Conceptual Difficulties

e Impacts poorly known

— Often poor natural science/engineering knowledge (at
least today)

— Need for valuation of goods

 Need to weigh
— Present mitigation costs ... against ...
— Future avoided damages



 An easier & better-posed alternative? ...



When to Invest How Much into
which Energy Technology?
Phrasing as a Control Problem

Investments in
* Renewables
» Efficiency

* Fossil Fuels
* CCS

Investment decisions
(control paths)

\c(t)

Socio-Economic System Climate System

c(co)) Welfare := [ dt|Utility’[t)[(c(to), ...

‘Cost-Effectiveness-Mode’




Our Research Question

When to invest how much into what energy technology,
given the 2° C (X° -)target?

Options:

— Renewable sources

— Energy efficiency

— Carbon capture & sequestration (CCS)

— Nuclear

— coupled economy — climate modules.



Costs of Climate Targets?
Our Model Setup

Ramsey-type
Macroeconomic
Growth Model

Energy system
/nvestments

Energy as
production
factor

Costs of various

Energ_y systems; CO, emissions
Lea rning curves from fossil sector

2° target
observed?

Climate Module
(Energy
Balance-type)

Edenhofer et al. (MIND / ReMIND, 2005-2012)




The simplest Climate Model

Control Variable

/

F = E (1)

C = BE+BF-oC 2)

I = () -of_wih = CE )
pi

Variable used for guardrall in CostEffectivenessAn.
Variables

E  Anthropogenic CO5 emissions [GtC a™ ']
F' Cumulative anthrop. CO42 emissions [GtC]
C  Atmospheric CO5 anomaly [ppmv]

T Global mean temperature anomaly [ °C]

Initial conditions (year 1995, p1 = preindustrial)




The simplest Climate Model

F = E Carbon (1)
¢ = BE+BF—oC | ©V°F° 2)
T = nln(c) — oI with c:C—l_sz (3)
Chpi
Temperature Equation

Variables

E  Anthropogenic CO5 emissions [GtC a™ ']

F' Cumulative anthrop. CO42 emissions [GtC]

C  Atmospheric CO5 anomaly [ppmv]

T Global mean temperature anomaly [ °C]

‘anomaly’ w.r.t. p1 = preindustrial




Intertemporal Optimization as a
key application of Utilitarism

One application of ‘Static Welfare:= average of individuals’ utilities’

Max! Welfare := [ dt U(t) e=r{t=t0)
o

N

now
0 = ‘pure rate of time preference’

If p=3% / year, you care about your children,
If p=1% / year, you also care about your grand-children.

Battle among economists: is p a normative or a positive (i.e.
descriptive) parameter?

When trying to interpret p as a descriptive parameter, in my view, this
iImplies that the whole functional given above is also descriptive (at
least with respect to the traditionally experienced incentive system).



Odysseus & the Sirens




A highly desirable Property of this
Welfare Functional

Max! Welfare := [ dt U(t) e—p(t=to)
to

™

now’

This prescription Is ‘time-consistent’:

Let {c*(t)} a control path that optimizes above
welfare W ([ty, ).

Let t,<t,.
Then {c*} also optimizes W(]t,,o0]).



Anticipated time-inconsistency:
Odysseus & the Sirens




This means:

* If boundary conditions stay the same, the
decision-maker does not need to change her or
nis plans over time.

* A normatively very satisfying property of this
decision rule.

« T C Koopmans showed necessary conditions for
time-consitency.



Proof that Exponential Discounting implies
Time-Consistency

Max! Welfare(tg) := /dt U(C(t)) e=Plt—to)
to
tl oo
- [wuew et [ave) e
to t1

Suppose the control path {c*(t)}7° steers the above functional into its op-
timum and it comes with a capital stock K*(t;) that sets all the boundary
conditions between the two integral periods. Then ¢* also optimizes | tjo (if it
did not, another ¢ would do a better job on [ tcio, hence also on ftzo, and c¢* could

not be the optimum for | ;;O) Then
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2 Interpretations of Technological Progress
Leading to Cost Reduction

Endogenous
Technological
Change

Exogenous
Technological Change

Definition

Cost reduction
primarily a function of
total installed
capacity

Cost reduction primarily
a function of time (spill-
over effects from overall
technol. development)

Consequence for
climate policy

Investment into new
technologies can
accelerate their cost
reduction — early
deployment?

Investment into new
technologies does not
accelerate their cost
reduction — later
deployment?




2 Interpretations of Technological Progress
Leading to Cost Reduction

The following studies: l

Endogenous Exogenous
Technological Technological Change
Change

Definition Cost reduction Cost reduction primarily

primarily a function of
total installed
capacity

a function of time (spill-
over effects from overall
technol. development)

Consequence for Investment into new
climate policy technologies can
accelerate their cost
reduction — early
deployment?

Investment into new
technologies does not
accelerate their cost
reduction — later
deployment?




Bridging the Mitigation Gap

35

Gigatons carbon (C) per year

From
REMIND-G
. (OD-Model)
year
Energy-induced emissions
I nuclear
E :”ewab'esccs Bruckner, Edenhofer,
o Held et al., 2009

| ] fossil+cCs
- efficiency

Coal/Qil/Nat.Gas cheap, pure time preference rate 1%



Preliminary Summary

It is extremely likely that anthropogenically caused global warming
IS unfolding.

Unmitigated future warming might lead to temperature changes
unprecedented for the past 50 million years.

Coupled energy-climate economy models are used to project the
costs of climate targets.

Generically, the economic optimizer would choose an energy mix
from renewables, energy efficiency increase, fossil fuels, mainly in
combination with carbon capture & storage, nuclear.

Tomorrow:
— Costs of climate targets
— Extra costs for eliminating energy options from the portfolio
— Decision under uncertainty: Fundamental issues ..
— Climate policy, IPCC, and its academia-policy interaction model
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Figure SPM.9 | Projections of global mean sea level rise over the 21st century relative to 1986-2005 from the combination of the CMIP5 ensemble
with process-based models, for RCP2.6 and RCP8.5. The assessed likely range is shown as a shaded band. The assessed likely ranges for the mean
over the period 2081-2100 for all RCP scenarios are given as coloured vertical bars, with the corresponding median value given as a horizontal
line. For further technical details see the Technical Summary Supplementary Material {Table 13.5, Figures 13.10 and 13.11; Figures TS.21 and T5.22}



