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Generate random
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Generate deterministic speckle using spatial light modulator, no need
for CCD — the computer already knows!
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Detected signal - average signal
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N random pattern X (detector signal - average detector signal)

~ Need N different patterns to give N pixel image

Or use “compressive” techniques (c.f. JPEG) to do better!
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Object Projected patterns

Iteration
227

Accumulated image
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lterative reconstruction of 2D image Test object (toy skull)




i[a University How many measurement does an image

of Glasgow require?

Reasonable to assume no. of measurements = no. of pixels

When the number of unknowns exceeds the amount of data then
many different solutions fit the data perfectly! i.e. ¥*/N =0

But (in the presence of noise) it is very unlikely that your measured
all data was perfect. Much more likely is that ¥%/N =1

So of all these possible solutions (images) which one should you
pick?

Real images
- Only have positive intensities
- Can be JPEG compressed (they are sparse in spatial frequency)

“Least squares fitting” is a necessary, but not sufficient, strategy



o1a| Unaversity . .
of Glascow Compressive Ghost Imaging

Recon by Chi-squared Chi-squared solution +
minimization regularization
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R is a measure of Entropy or DCT
Keep making small sparsity, or total variation etc.
changes to image

chiA2/N

7.02826-9

Regularisation

Recalculate Cost
IO
Lambda
IO

¥2/N + L xR = cost

Calculate Cost of
“solution”

Cost

v*}/N + A xR = cost | 1000025703

Repeat, keeping only those
changes which reduce cost

Many possible solutions have an acceptable, X* so pick
the one of these that has other properties too.....
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single-pixel
photodetector



ﬁf‘éh‘ﬁ?éﬁl 3D Ghost Imaging with classical light

.
[SEwewerwe] -~

y single pixel
photodetector light projector

z X
structured analogue-digital
illumination Y% o/ converter
\ @ =
\ p (£'
| 7
\ (7
b \J )
/ ‘//"" computer
)



U;-\

Display random patterns at 660Hz
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3D Ghost Imaging with classical light
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Surface Gradients

Integrate gradients (and optimize) to
give surface profile
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Works with real images too, “shape from shade”

<) of Glasecow ~Calculating surface gradients

dz/dx
Surface gradient

dz/dx of data
96~

80- Frmg ok
60- [

>
40~

¢

20- S

Qe — | | B = 1 |
0 10 20 30 40 50 60 70 80
X




ol University

of Glasgow

h
[SEwewerwe] -~

dz/dx
Surface gradient

dz/dx of data
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Integrate to give surface height (z) — but with what boundary condition?

Calculating Surface height

dz/dy
Surface gradient

dz/dy of data
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z(x=0)=0, or z(y=0)=0 etc
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Compare to measured gradients

: Calculate ? and add regularisation to give
Make random Recalculate gradients X , & g
change to surface total cost of solution

%>+ A x R = cost

Repeat, keeping only those changes which reduce cost

Regularisation is properties of “solution” we'd like to “encourage” e.g. flatness
(i.e. minimise sum of z) and/or smoothness (i.e. minimise sum of d?z/dx?)
Set A at sensible value....



},fla,ll\ﬁf;éa Calculating Surface height

Average over several possible Apply optimisation
boundary condition
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Generate deterministic speckle using spatial light modulator, no need
for CCD — the computer already knows!

— |dentical “copies”

of random pattern

Spatial Light llluminate object

modulator , With pattern
I
I
Laser or
Thermal Random Pattern -

source

Measure
scattered light
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® Filter the scattered light — use all the same algorithms as a

computational ghost imager

— |dentical “copies”

of random pattern

\ llluminate object
, With pattern

Random Pattern

Measure
scattered light
(filtered by
spatial light
modulator)
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Don’t use random patterns use Hadamard patterns

Hadmards are orthogonal to each other (unlike random)

Many Hadamards are redundant within any real image
(unlike random)

Display every pattern and a +ve and —ve pair
(common mode rejection)
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Imaging at
non visible Imaging of Single Pixel Imaging of
and/or Gas Microscopy/ | Polarisation
many Emissions video anomalies
wavelengths

Single pixel (Ghost) Imaging
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3D Computational Imaging with
Single-Pixel Detectors
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Fast full-color computational imaging
with single-pixel detectors
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