Long range interactions in quantum gases a tutorial

Tilman Pfau 5. Physikalisches Institut – Universität Stuttgart

Interactions make life interesting

Short range interactions

Long range interactions

dipolar interaction

Lecture II: Rydberg Rydberg interaction

Early interest in dipoles

- Compass needles
- 1970 DeGennes: anisotropic gas; chains
- 1980's ferrofluids

PUTT

Rosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. **30**, 671 (1967)

21st century : add quantum mechanics

Anisotropy: the roton in dipolar BEC

Effect of contact interaction

Two particles in a box potential (s-wave)

Periodic table of magnetic moments

	H 1															He 0		
	Li 1	Be 0											B 0.3	C 0	N З	О З	F 2	Ne 0
	Na 1	Mg 0	2004 Al Si P S 0.3 0 3 3													Cl 2	Ar 0	
	K 1	Ca O	Sc 1.2	Ti 1.3	V 0.6	Cr 6	Mn 5	Fe 6	Co 6	Ni 5	Cu 1	Zn 0	Ga 0.3	Ge 0	As 3	Se 3	Br 2	Kr 0
	Rb 1	Sr 0	Y 1.2	Zr 1.3	Nb 1.7	Mo 6	Tc 5	Ru 7	Rh 6	Pd 0	Ag 1	Cd 0	In 0.3	Sn O	Sb 3	Te उ	2	Xe 0
Ī	Cs 1	Ba 0		Hf 1.3	Ta 0.6	W 0	Re 5	Os 6	ir 6	Pt 4	Au	Hg 0	Tl 0.3	РЬ 0	Bi 3	Ро 3	At 2	Rn 0
	Fr 1	Ra 0		Rf 1.3	Db 0.6	Sg 0	Bh 5	Hs 6	Mt 6	Ds 4	Rg 1	Cn 0	Uut 0.3	Uuq 0	Uup 3	Uuh 3	Uus 2	Uuo O
2011 2012																		
			La 1.2	Ce 4	Pr 3.3	Nd 2.4	Pm 0.7	Sm 0	Eu 7	Gd 5.3	Tb 10	Dy 10	Ho 9	Er 7	Tm 4	Yb 0	Lu 1.2	
			Ac 1.2	Th 1.3	Pa 4.2	U 4.3	Np 3.4	Pu 0	Am 7	Cm 5.3	Bk 10	Cf 10	Es 9.1	Fm 7	Md 4	No 0	Lr 0.3	
				-												2		-

Periodic table of magnetic moments

н																He	
1		$1 \cdot 1 \cdot 2m$															0
Li	Ве						-		$\mu_0 \mu$	m		в	с	N	0	F	Ne
7	Ω						E _{dd}	= -	<u> </u>	12		1	0	126	144	76	0
Na	Mg	$12\pi\hbar^2 a_{bg}$ AI SI P S CI A														Ar	
23	υ												U	279	289	142	U
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39	0	65	85	18	1872	1373	2010	2122	1467	64	0	8	0	674	711	320	0
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I.	Хе
85	0	1.28	162	258	3455	2450	4952	3705	0	108	0	13	0	1096	1148	508	0
Cs	Ва		Hf	Та	w	Re	Os	lr	Pt	Au	Hg	ті	Pb	Bi	Po	At	Rn
133	0		317	65	0	4655	6848	6920	3121	197	0	23	0	1881	1881	840	0
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo
223	0		471	96	0	6800	9720	9936	4496	280	0	32	0	2592	2637	1176	0

2011 2012

_															
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ть	Бу	Но	Er	Tm	Yb	Lu
	200	2242	1509	831	74	0	744G	4473	15893	16250	13359	8196	2703	0	252
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	327	413	4135	4372	2715	0	11907	7026	24700	25100	21017	12593	4128	0	29

How to describe an interacting quantum gas

Gross-Pitaevskii equation for the order parameter:

Elongation of the condensate along **B** $\varepsilon_{\rm dd}$ << 1, spherical trap: Mean-field potential due to the dipolar interaction: Saddle potential. \rightarrow The atoms are accommodated **close to the** *z* **axis**. These conclusions remain valid: - for anisotropic traps, S. Giovanazzi - for arbitrary ε_{dd} , D. O'Dell C. Eberlein - during the time of flight.

A quantum ferrofluid

T. Lahaye, T. Koch, B. Fröhlich, M. Fattori, J. Metz, A. Griesmaier, S. Giovanazzi, T. Pfau; Nature **448**, 672 (2007)

dipolar coupling in fluids

Ferrofluids

Iron particles

Institut

Bose-Einstein condensation with magnetic dipole-dipole forces

Krzysztof Góral,¹ Kazimierz Rzążewski,¹ and Tilman Pfau,^{2,*} ¹Center for Theoretical Physics and College of Science, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland ²Faculty of Physics, University of Konstanz, 78457 Konstanz, Germany (Received 20 July 1999; revised manuscript received 1 October 1999; published 24 March 2000)

Ground-state solutions in a dilute gas interacting via contact and magnetic dipole-dipole forces are investigated. To the best of our knowledge, it is the first example of studies of Bose-Einstein condensation in a system with realistic long-range interactions. We find that for the magnetic moment of, e.g., chromium $(6\mu_B)$, and a typical value of the scattering length, all solutions are stable and only differ in size from condensates without long-range interactions. By lowering the value of the scattering length we find a region of unstable solutions. In the neighborhood of this region, the ground-state wave functions show internal structures that we believe have not been seen before in condensates. Finally, we find an analytic estimate for the characteristic length appearing in these solutions.

PACS number(s): 03.75.Fi, 05.30.Jp

L. Santos, G. Shlyapnikov, P. Zoller, M. Lewenstein, PRL **85**, 1791 (2000).

RAPID COMMUNIC

...depends *strongly* on the trap geometry:

$$V(x, y, z) = \frac{m}{2} \left[\omega_{\rho}^2 (x^2 + y^2) + \omega_z^2 z^2 \right] \qquad \text{Aspect ratio:} \quad \lambda \equiv \frac{\omega_z}{\omega_{\rho}}$$

Cigar-shaped

 $\lambda < 1$

Attractive: unstable

Repulsive: stable

Stability criterion: a simple model

How to get a simple estimate for the critical value $a_{crit}(\lambda)$?

→ Gaussian Ansatz

• Gross-Pitaevskii energy functional:

$$E[\Phi] = \int \left[\frac{\hbar^2}{2m} |\nabla \Phi|^2 + V_{\text{trap}} |\Phi|^2 + \frac{g}{2} |\Phi|^4 + \frac{1}{2} |\Phi|^2 \int U_{\text{dd}}(\boldsymbol{r} - \boldsymbol{r}') |\Phi(\boldsymbol{r}')|^2 \mathrm{d}\boldsymbol{r}'\right] \mathrm{d}\boldsymbol{r}$$

• Gaussian Ansatz (sizes σ_r and σ_z as variational parameters)

$$\Phi(r,z) = \left(\frac{N}{\pi^{3/2}\sigma_r^2\sigma_z a_{\rm ho}^3}\right)^{1/2} \exp\left(-\frac{1}{2a_{\rm ho}^2}\left(\frac{r^2}{\sigma_r^2} + \frac{z^2}{\sigma_z^2}\right)\right)$$

• If a is too small, there is no more local minimum for $E[\Phi]$: this gives a_{crit} .

Stability diagram

Stability & collapse of a dipolar BEC

dipole-dipole interaction: long-range and anisotropic

 \rightarrow geometry-dependent stability / collapse

d-wave collapse 0 ms 0.1 ms 0.2 ms 0.3 ms 0.4 ms 0.5 ms T. Lahaye et al., PRL **101** (2008) J. Metz et al., New J. Phys. 11 (2009)

J. Metz, T. Lahaye, B. Fröhlich, A. Griesmaier, T. Pfau, H. Saito, Y. Kawaguchi, and M. Ueda New J. Phys. 11, 055032 (2009)

Stability of a dipolar BEC

Interactions:

- contact interaction (scattering length *a*): tuned via Feshbach resonance *isotropic and short-range*
- dipole-dipole interaction (DDI): anisotropic and long-range

Multi-well potentials: inter-site interaction mediated by DDI

Stability given by energy balance between

- on-site interaction (contact + DDI)
- inter-site interaction (DDI)

A dipolar BEC in a 1D optical lattice

A dipolar BEC in a 1D optical lattice

Confinement: lattice + optical trap

New method to induce the collapse !

→ keep interaction strength constant
 → change external degree of freedom

innnnni.

Deconfinement-induced collapse

Time-of-flight induced collapse

Time = 0.15000 ms as = 2.00000 a0 U = 12.60000 Erec

Novel collapse mechanism !

2-step process:

- 1. High momentum peaks 2ħk leave
- 2. The 0ħk component collapses!

Movie by Mattia Jona-Lasinio, Luis Santos

Another dipolar effect: Coupling spin and motion

Experimenteller Nachweis der Ampéreschen Molekularströme Verhandlungen der DPG 17, 152 (1915)

Appl. Phys. B 77, 765-772 (2003)

DOI: 10.1007/s00340-003-1334-0

S. HENSLER^{1,}⊠ J. WERNER¹

A. GRIESMAIER¹ P.O. SCHMIDT¹

S. GIOVANAZZI²

K. RZĄŻEWSKI³

A. GÖRLITZ¹

T. $PFAU^1$

Dipolar relaxation in an ultra-cold gas of magnetically trapped chromium atoms

¹ 5. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany

² School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY 16 9SS, Scotland

³ Center for Theoretical Physics and College of Science, Polish Academy of Science, Aleja Lotników 32/46, 02-668 Warsaw, Poland

$$U_{\rm dd}(\mathbf{r}) = \mu_0 (g_S \mu_{\rm B})^2 \frac{(S_1 \cdot S_2) - 3(S_1 \cdot \hat{\mathbf{r}})(S_2 \cdot \hat{\mathbf{r}})}{4\pi r^3} \,. \tag{1}$$

Here we have introduced the interatomic separation $\mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1$ with $\hat{\mathbf{r}} = \mathbf{r}/r$ and the magnetic permeability of the vacuum μ_0 . The tensorial part of the dipolar interaction (1), namely $(S_1S_2) - 3(S_1\hat{\mathbf{r}})(S_2\hat{\mathbf{r}})$, can be rewritten in terms of spin-flip operators as

$$S_{1z}S_{2z} + \frac{1}{2} \left(S_{1+}S_{2-} + S_{1-}S_{2+} \right) - \frac{3}{4} \left(2\hat{z}S_{1z} + \hat{r}_{-}S_{1+} + \hat{r}_{+}S_{1-} \right) \times \left(2\hat{z}S_{2z} + \hat{r}_{-}S_{2+} + \hat{r}_{+}S_{2-} \right), \qquad \sigma_{0} = \frac{16\pi}{45} S^{4} \left(\frac{\mu_{0} \left(g_{S}\mu_{B} \right)^{2} m}{4\pi\hbar^{2}} \right)^{2} \left[1 + h(1) \right], \sigma_{1} = \frac{8\pi}{15} S^{3} \left(\frac{\mu_{0} \left(g_{S}\mu_{B} \right)^{2} m}{4\pi\hbar^{2}} \right)^{2} \left[1 + h(k_{f}/k_{i}) \right] \frac{k_{f}}{k_{i}}, \sigma_{2} = \frac{8\pi}{15} S^{2} \left(\frac{\mu_{0} \left(g_{S}\mu_{B} \right)^{2} m}{4\pi\hbar^{2}} \right)^{2} \left[1 + h(k_{f}/k_{i}) \right] \frac{k_{f}}{k_{i}},$$

Applied Physics B Lasers and Optics

0

Coupling spin and motion Demagnetization cooling 1950 A. Kastler: lumino-refridgeration

S. Hensler, A. Greiner, J. Stuhler and T. Pfau *Europhys. Lett.*, **71**, 918 (2005)
M. Fattori, T. Koch, S. Goetz, A. Griesmaier, S. Hensler, J. Stuhler, and T. Pfau *Nature Physics 2, 765 (2006)*V. V. Volchkov, J. Rührig, T. Pfau, A. Griesmaier *Phys. Rev. A* **89** (2013)

Outlook: Stronger dipoles - ferrofluid

88 888 88 88 88 88 88 88 88 88 88

Classical

Quantum

H. Saito, Y. Kawaguchi, and M. Ueda Phys. Rev. Lett. **102**, 230403 (2009)

Interactions in ultracold gases

Properties of Dysprosium

Stable Isotopes	¹⁶¹ Dy (19%), ¹⁶² Dy (26%), ¹⁶³ Dy (25%), ¹⁶⁴ Dy (28%)		
Electronic structure	[Xe] $4f^{10} 6s^2 \rightarrow {}^{5}I_8$		
Nuclear spin	5/2 (for fermions)		
Magnetic moment μ	10 μ_B (highest of all atomic elements)		

The (current) Team

Matthias Wenzel

Lecture II: Rydberg Rydberg interaction

dipolar interaction

Rydberg atoms

One typical example: 43S

Stark effect in hydrogen

Reminder: Stark map of Rubidium

Electric field control

1

Electric field control

Lifetime of the 43s state with Blackbody Radiation

principal quantum number n

Properties of Rydberg Atoms

quantity	scaling	43S-state of ⁸⁷ Rb
radius	$\propto n^2$	2384 a ₀
lifetime	\propto N ₃	50µs
Polarizability	$\propto n^7$	8 MHz (V/cm) ⁻²
Van der Waals C ₆	$\propto n^{11}$	-1.7 x 10 ¹⁹ a.u.

The interactions between Rydberg states are ...

- ... strong
- ... long-range
- ... tunable
- ... switchable
- ... anisotropic

- ... for neutral atom quantum computing and quantum simulation
- ... as long range and anisotropic interaction potentials for
- quantum degenerate gases
- ... as an optical non-linearity on the single photon level

T. Förster, Z. Naturforsch 4a, 321 (1949)

Förster energy transfer

T. Förster, Z. Naturforsch 4a, 321 (1949)

Förster Resonance

Dipolar interactions: Förster resonances

T. Förster, Z. Naturforsch 4a, 321 (1949)

Bare states

Pair states

finite Förster defect Δ : van-der-Waals interaction (~ 1/R⁶)

no Förster defect $\Delta = 0$: resonant dipole-dipole interaction (~ 1/R³)

Interaction between Rydberg atoms

 $\begin{array}{c|c} & & |p'\rangle & & |sp'\rangle \\ \hline & & |s\rangle & & |sp'\rangle \\ \hline & & |s\rangle & & |pp'\rangle \\ \hline & & |s\rangle & & |ss\rangle \end{array} \end{array} \begin{array}{c} \mathcal{H}_{dd} = \begin{pmatrix} 0 & \frac{d_1d_2}{R^3} \\ \frac{d_1d_2}{R^3} & \Delta \end{pmatrix} \\ E_{\pm} = \frac{\Delta}{2} \pm \sqrt{\left(\frac{\Delta}{2}\right)^2 + \left(\frac{d_1d_2}{R^3}\right)^2} \end{array}$ $|s\rangle \implies \checkmark$ $\Delta \gg d_1 d_2 / R^3$ $E_{\rm vdW} = E_{-} = -\frac{1}{\Delta} \frac{(d_1 d_2)^2}{R^6} \equiv \frac{C_6}{R^6}$ pair states bare states Dipolar interaction for R <<sign depends on Δ !

Förster resonance: tune Δ to zero

Stark tuned Förster resonances

Förster resonances

Förster resonances

Is this all coherent $\Psi\Phi$ in a dense gas??

Some experimental details

Ramsey interferometer

Rydberg atom interferometry

A pair state interferometer

A pair state interferometer

Interaction induced dephasing and phase shift

Interaction induced dephasing and phase shift

Excitation blockade by van der Waals interaction

• Super tom made of 2-100000 atoms

Ultracold samples:

Blockade measurements

change density by microwave change Ω_0

Scaling of excitation rate R

Effective Spin Hamiltonian

Universal scaling close to a quantum critical point

Strongly interacting Rydberg gas

Mean-field result:

Universal scaling close to a quantum critical point

Strongly interacting Rydberg gas

Ferromagnet - Ising model

Universal scaling close to a quantum critical point

Strongly interacting Rydberg gas

Ferromagnet - Ising model

Data collapse on a simple power law – Universal scaling

Rydberg atoms in dense gases

The COLD RYDBERG Leam

W Li, T Pohl, JM Rost ST Rittenhouse, HR Sadeghpour, D Peter, HP Büchler, K Rzążewski, M Brewczyk M. Kurz, P. Schmelcher

Sebastian Hofferberth: Rydberg quantum optics

