Energy from nuclear fission

M. Ripani INFN Genova, Italy

Joint EPS-SIF International School on Energy 2014

Plan

- ✓ Figures about nuclear energy worldwide
- ✓ Safety
- ✓ Reaction products
- ✓ Radioactive waste production
- ✓ Fuel resources
- ✓ Fuel cycle
- ✓ Generation IV
- ✓ Fast systems
- ✓ ADS
- ✓ The European Roadmap
- ✓ Lead-based systems
- ✓ Waste processing and fuel cycle

Nuclear energy today in the world

	in ope	ration	Under construction		
	No. of reactors	Capacity (MW)	No. of reactors	Capacity (MW)	
Argentina	2	935	1	692	
Armenia	1	375	_	_	
Belgium	7	5 927	_	_	
Brazil	2	1 884	1	1 245	
Bulgaria	2	1 906	_	_	
Canada	18	12 604	—	—	
China	16	11816	26	26 620	
Chinese Taipei	6	5 018	2	2 600	
Czech Republic	6	3 766	_	_	
Finland	4	2 736	1	1 600	
France	58	63 130	1	1 600	
Germany	9	12 068	_	_	
Hungary	4	1 889	_	_	
India	20	4391	7	4824	
Iran	1	915	0	0	
Japan	50	44215	2	2 650	
Mexico	2	1 3 0 0	—	—	
Netherlands	1	482	—	_	
Pakistan	3	725	2	630	
Republic of Korea	21	18 751	5	5 560	
Romania	2	1 300	—	—	
Russian Federation	33	23 643	10	8188	
Slovak Republic	4	1816	2	782	
Slovenia	1	688	—	_	
South Africa	2	1 830	—	—	
Spain	8	7 567	_	_	
Sweden	10	9 3 2 6	—	—	
Switzerland	5	3 263	_	_	
Ukraine	15	13 107	2	1 900	
United Kingdom	18	9 953	_	—	
United States	104	101 465	1	1 1 65	
Total	435	368 791	63	60 0 56	

Nuclear generating capacity in operation and under construction (end 2011)

Source: IAEA Power Reactor Information System (PRIS).

Worldwide nuclear generating capacity and number of operating reactors (1965-2011)

Source: IAEA Power Reactor Information System (PRIS).

Share of electricity

Source: IAEA Power Reactor Information System (PRIS).

Nuclear energy in the worldwide perspective

Total: 20 130 TWh

Reactor types in use worldwide (end of 2010)

Source: Nuclear Energy Today Edition 2012, NEA/OECD

The situation in Europe

Source: Eurostat (October 2010)

Cost of electricity

Regional ranges of LCOE for nuclear, coal, gas and onshore wind power plants (5% discount rate and carbon price of 30 USD/tonne CO2)

Source: IEA/NEA, Projected Costs of Generating Electricity, 2010

Emissions compared

The environmental impact of various energy sources is measured by looking at the release of pollutants and greenhouse gases (about 27 % of CO₂ emissions comes from electricity production).

Emissions from a 1000 MWe power plant [t/year]

(Ref. Energia in Italia: problemi e prospettive (1990 - 2020) - Italian Physical Society 2008)

		CO ₂	SO ₂	MO _x	Polveri	Only fuel burnup								
Nuclear		0	0	0	0 <		,							
Coal		7.500.000	60.000	22.000	1.300	Ĩ		Technology	Capacity/configuration/fuel	Estimate	(gCO ₂ e/			
Oil		6.200.000	43.000	10.000	1.600	Ι				kWh)	(Wh)			
Gas		4.300.000	35	12.000	100	Ĩ		Wind	2.5 MW_offshore		9			
Photovoltaic		0	0	0	0	1		Hydroelectric	3.1 MW, reservoir		10			
Wind	_	0	0	0	0	1		Wind	1.5 MW, onshore		10			
								Biogas	Anaerobic digestion		11			
If one cons	siders the	e whole plant	lifetime (fr	om fuel m	ining/extra	action to	2	Hydroelectric	300 kW, run-of-river		13			
docommis	cioning)		(-	Solar thermal	80 MW, parabolic trough		13			
uecommis	Biomass Forest wood Co-combustion with hard				th hard coal	14								
					Biomass	Forest wood steam turbine		22						
						Biomass	Short rotation forestry Co-comp	Sustion with	23					
= Frontend 2F 00 = // W/h				Riomass	FOREST WOOD reciprocating en	gine	27							
	Frontena, 25.09 g/kwn			Biomass	Waste wood steam turbine	igine	27							
								Solar PV	Polycrystalline silicone		32			
				Construction, 8.20 g/kWh				Biomass	Short rotation forestry steam tu	ırbine	35			
								Geothermal	80 MW, hot dry rock		38			
				Operat	ion, 11,58 g/	/kWh		Biomass	Short rotation forestry reciproca	ating engine	41			
					Nuclear	Various reactor types		66						
							Natural gas Various combined cycle					Various combined cycle turbine	2S	443
				■ Backend, 9.20 g/Kwh		■ Backend, 9.20 g/Kwh Fuel cell		Fuel cell	Hydrogen from gas reforming		664			
			. /					Diesel	Various generator and turbine t	ypes	778			
				II Decom	Decommissioning, 12.01 g/KWh		ecommissioning, 12.01 g/KWh		Wh	Heavy oil	Various generator and turbine t	ypes	778	
							Coal Various generator types with scrubbi Coal Various generator types without scru			960				
				Total, 66.08 gCO ₂ e/kWh							1050			

Ref: Benjamin K. Sovacool, Energy Policy 36 (2008) 2940-2953

Emissions compared....Europe

Million tonnes CO₂eq

Source: Emissions avoided in 2008 calculated using fossil fuel-emission rates from the IEA, IAEA and WEC and plant generation data from Eurostat.

Greenhouse gas emissions avoided in 2008 thanks to nuclear and renewables in Europe

The European scenario extrapolated to 2030 assuming different contributions of nuclear energy

CO₂ emissions from electricity production in the EU [Mt]. Source:World Energy Outlook 2006 - International Energy Agency

Energy consumption and emissions... the worldwide perspective

Table 2.1 • World primary energy demand by fuel and scenario (Mtoe)

		980 2008	New Sce	Policies enario	Curren	t Policies enario	Sce	450 enario
	1980		2020	2035	2020	2035	2020	2035
loal	1 792	3 315	3 966	3 934	4 307	5 281	3 743	2 496
Dil	3 107	4 059	4 346	4 662	4 443	5 026	4 175	3 816
Gas	1 234	2 596	3 132	3 748	3 166	4 039	2 960	2 985
luclear	186	712	968	1 273	915	1 081	1 003	1 676
Hydro	148	276	376	476	364	439	383	519
Biomass and waste*	749	1 225	1 501	1 957	1 461	1 715	1 539	2 316
Other renewables	12	89	268	699	239	468	325	1 112
Total	7 229	12 271	14 556	16 748	14 896	18 048	14 127	14 920

New Policies Scenario: A scenario that anticipates future actions by governments to meet the commitments they have made to tackle climate change and growing energy insecurity. **450 Scenario:** A scenario presented in the World Energy Outlook, which sets out an energy pathway consistent with the goal of limiting the global increase in temperature to 2° C by limiting concentration of greenhouse gases in the atmosphere to around 450 parts per million of CO₂.

Current Policies Scenario: A scenario in the World Energy Outlook that assumes no changes in policies from the mid-point of the year of publication (previously called the Reference Scenario)

Figure 2.2 • Shares of energy sources in world primary demand by scenario

The emission scenarios

IEA - World energy outlook 2010

Safety

Generation II plants in operation in the world \rightarrow safety upgrades may be requested for some of the following the post-Fukushima "stress tests" and the recommendations that will be issued by the relevant nuclear regulatory authorities

Generation III/III+ reactors currently under construction

→ safety upgrades are expected to address lessons learnt from the Fukushima Daiichi accident

→ may be more limited as these reactors have incorporated design features that apply passive safety features and consideration of severe accident mitigation

These designs are characterised by:

- explicit consideration of severe accidents as part of an extended design condition;
- effective elimination of some severe accident sequences by inherent safety features using passive systems;
- significant reduction or elimination of radioactive releases even in the unlikely case of severe accidents;
- improved operability and maintainability by extensive use of digital technology;
- reduction in system complexity and the potential for human error.

All of these features, if successfully implemented, could result in less need for extensive onsite and off-site protective measures, such as evacuation plans for the public, and would represent further improvements over the current safety posture

Long lifetime radioactive waste production (1 GW_e LWR)

LLFP=Long Life Fission Products

Transuranics = Minor Actinides + Pu

How long will U resources last ?

As an example, fuel fabrication for a big nuclear power plant with 1000 MWe production, requires about 160.000 Kg natural U per year

 \rightarrow In the current scheme with about 400 reactors and 369.000 Mwe capacity, "conventional" (cheap) reserves would last for another 80 years (maybe less if average reactor power will increase)

 \rightarrow Should nuclear power increase as in some of the above scenarios, we should think about (more expensive) resources like phosphates (doable) or U from sea water (still under study)

 \rightarrow Switching to fast reactors/Thorium cycle would increase availability to a few 100/few 1000 years

millio ur	on tons anium
Australia	1.14
Kazakhstan	0.82
Canada	0.44
USA	0.34
South Africa	0.34
Namibia	0.28
Brazil	0.28
Russian Federation	0.17
Uzbekistan	0.12
World total	
(conventional reserves	\frown
in the ground)	4.7
Phosphate deposits	22
Seawater	4 500

Lifetime of uranium resources (in years) for current reactor technology and future fast neutron systems (based on 2006 uranium reserves and nuclear electricity generation rate)

	Identified resources	Total conventional resources	Total conventional and unconventional resources
Present reactor technology	100	300	700
Fast neutron reactor systems	> 3 000	> 9 000	> 21 000

Source: OECD/NEA, Nuclear Energy Outlook, 2008

Uranium resources

Need to produce new fuels non-natural with fertilization factor (ratio produced fuel/burnt fuel) ≥ 1

²³⁸U (n, γ) \rightarrow ²³⁹U \rightarrow ²³⁹Np \rightarrow ²³⁹Pu (fissile) ²³²Th (n, γ) \rightarrow ²³³Th \rightarrow ²³³Pa \rightarrow ²³³U (fissile)

Advantageous in the fast chain reaction (number of produced neutrons per absorbed neutron>2)

- Conversion of ²³⁸U in fissile material (Pu²³⁹) in fast reactors would allow to increase by 60 the quantity of produced energy starting from natural U
- The possibility of producing energy from Thorium in the cycle Th²³² → U²³³ would enormously increase fuel availability and would reduce the waste (less production of Transuranic elements)

The thorium cycle

	Cm 238 2,4 h	Cm 239 3 h	Cm 240 27 d st st st 9	Cm 241 32,8 d * * * * * * * * * * *	Cm 242 162,94 d sl a 6,113; 6,059 y(44); a ⁻ o ⁻ 20 or; - 5	Cm 243 29,1 a sf = 5.765, 5.742 c sf: p = 275, 228; 210	Cm 244 18,10 a sf sf,g y(43),e ⁻ +15,1.1	Cm 245 8500 a st a 5.361; 5.314 at a y 175; 133 o 550; oy 2100	Cm 246 4730 a a 5,386; 5,343 sf; g Y (45); e o 1,2; o 0,16
Am 236 ? 3,7 m	Am 237 73,0 m • 6.042 • 2501: 436: 474: 909 9	Am 238 1,63 h * 5.94 y 963; 919; 561; g	Am 239 11,9 h \$1 \$1 \$270:228 9	Am 240 50,8 h • 5,376 • 9988, 339	Am 241 432,2 a st 96:5,445 st;96:26 st;96:26 st;96:26	Am 242	Am 243 7370 a st sty75:5230 sty75:44 r75+5 rg 0.074	Am 244	Am 245 2,05 h sf ^{µ=0.9} (241;296) e ⁻ :9
Pu 235 25,3 m	Pu 236 2,858 a st x 5,768; 5,721 s; Mg 20 y 148; 109]; e ⁻ oy 160	Pu 237 45,2 d sf	Pu 238 87,74 a sf # 5,499; 5,496 sl, 5; Mg y (43; 100); e ⁻ # 510; cg 17	Pu 239 2,411 - 10 ⁴ a a 5,157; 5,144 e ⁻ ; m e ⁻ 270; e ⁻ 752	Pu 240 6563 a st st; (45) e; o r 290; e; ~ 0.044	Pu 241 14,35 a sf #-0.02: g # 4.580 1(14856 + 370+1010	Pu 242 3,750 · 10 ⁵ a = 4,901; 4,856 sl; y (45) e^; g = 19; e ₁ < 0,2	Pu 243 4,956 h sf #0.6 7840 # 100; # 200	Pu 244 8,00 - 10 ⁷ a o 4,598; 4,546 8(1) e o 1,7
Np 234 4,4 d «; β ⁺ γ 1559; 1528; 1602 σ1 ° 900	Np 235 396,1 d ε; α 5,025; 5,007 γ[26; 84]; e g; σ160 + ?	Np 236 22,5 h 1,54-10 ⁵ ; « p=0.5 « p=: α γ(892; γ 180; 688 ε ⁻ 194 σ ⁻ 9; α 2700 4: α 260	Np 237 2,144 - 10 ⁶ a 4,790; 4/24 7 20; 67; 6 - 100	Np 238 2,117 d β ⁻ 1,2 γ 984; 1029; 1026; 924; e ⁻ g; σ 2100	Np 239 2,355 d β 0,4; 0,7 γ 106; 278; 228; e ⁻ ; g σ 32 + 19; σr < 1	Np 240 7,22 m 65 m (5° 2.2	Np 241 13,9 m ^{β⁻} 1.3 γ 175; (133) 9	Np 242 2,2 m 5,5 m 872,7 87 7738; 7736; 7405; 945; 1473 9 9	Np 243 1,85 m ^{β⁻ ^{γ 288} 9}
U 233 1,592 • 10 ⁵ a 4,824; 4,100 Ne 25; 7 (42; 97); e 47; rs 530	U 234 0,0055 047754 2sl Wg2k W 1 X 22 v7.e96 1 000	U 235 0,7200 7,86 10 4,5861 (, 10, 10 (, 10, 10) (,	U 236 120 ns 2,342:10° a 4,453 1, 7 2,342:10° a 4,453 1, 4,453 1, 4,453 1, 4,453 1, 4,453 1, 1, 2, 1, 2, 3,42 1, 3,42 1, 3,42 1, 3,42 1, 5,42 1, 5,42	U 237 6,75 d 9 60:208 e ⁻ a ~ 100; at < 0,35	U 238 99,2745 200 ps 4,456-10° a 4,556-10° a 4,556-10° a 4,556-10° a 4,556-10° a 4,556-10° a 4,556-10° a	U 239 23,5 m β ⁻¹ 1.2; 1.3 γ 75; 44 σ 22; σ: 15	U 240 14,1 h β ⁻ 0,4 γ 44; (190) e ⁻ m		U 242 16,8 m ^{β⁻} 7 68; 58: 585; 573 m
Pa 232 1,31 d β ⁻ 0,3, 1,3; ε γ 969: 894; 150; ε ⁻ σ 460; σ; 700	β 2 33 2 0 d β ⁺ 0; 10,1 0 γ 312 30 341,; e ⁻ a 20, 19; a < 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Pa 2:5 24,2 in ^{β⁻1,4} ^{γ 128} 65	Pa 236 9,1 m β ⁼ 2.0; 3,1 γ 642; 687; 1763; g βsf ?	Pa 237 8,7 m ^{β⁻1,4; 2,3 γ 854; 865; 529; 541}	Pa 238 2,3 m β ^{-1,7; 2,9} γ 1015; 635; 448; 680 9	148		150
Th 231 25,5 h β ⁻ 0,3; 0,4 γ 26; 84 e ⁻	Th 232 100 1,405 Tr a w 4, 113 3 % July 6 y 8, Lill 6 w 7, Pring 0, 10005	Th 233 22,3 m γ 12 γ 87.29; 459;6 ⁻ σ 1500; σ ₁ 15	Tr 234 24,10 J β ⁻ 0,1 γ63,92;94 e ⁻ ; t σ1,8;σ<001	Th 235 7,1 m β 1,4 γ 417; 727; 696	Th 236 37,5 m β ^{-1,0} γ 111; (647; 196)	Th 237 5,0 m			

LLFP

LLFP

The nuclear fuel cycle

IAEA Scheme for Classification of Radioactive Waste (2009)

1. <u>Exempt waste</u> (EW) – such a low radioactivity content, which no longer requires controlling

2. <u>Very short-lived waste</u> (VSLW) – can be stored for a limited period of up to a few years to allow its radioactivity content to reduce by radioactive decay. It includes waste containing radionuclides with very short half-lives often used for research and medical purposes

3. <u>Very low level waste</u>(VLLW) – usually has a higher radioactivity content than EW but may, nonetheless, not need a high level of containment and isolation. Typical waste in this class includes soil and rubble with low levels of radioactivity which originate from sites formerly contaminated by radioactivity

4. Low level waste (LLW) - this waste has a high radioactivity content but contains limited amounts of long-lived radionuclides. It requires robust isolation and containment for periods of up to a few hundred years and is suitable for disposal in engineered near-surface facilities. It covers a very broad range of waste and may include short-lived radionuclides at higher levels of activity concentration, and also long-lived radionuclides, but only at relatively low levels of activity concentration

5. <u>Intermediate level waste</u> (ILW) – because of its radioactivity content, particularly of long -lived radionuclides, it requires a greater degree of containment and isolation than that provided by near surface disposal. **It requires disposal at greater depths, of the order of tens of metres to a few hundred metres**

6. <u>High level waste</u> (HLW) – this is waste with levels of activity concentration high enough to generate significant quantities of heat by the radioactive decay process or waste with large amounts of long-lived radionuclides that need to be considered in the design of a disposal facility for such waste. **Disposal in deep, stable geological formations usually several hundred metres or more below the surface is the generally recognized option for disposal**

Often surface and deep repository are designed together and comprise additional infrastructures, such as to form a High-Tech Campus

Nuclear waste management

Indicative volumes (m³) of radioactive waste produced annually by a typical 1 000 MWe nuclear plant, for once-through cycle and with reprocessing of spent fuel

Waste type	Once-through fuel cycle	Recycling fuel cycle
LLW/ILW	50-100	70-190
HLW	0	15-35
Spent Fuel	45-55	0

Source: OECD/NEA, Nuclear Energy Today, 2012

Most of the reactors operative in the world today are thermal spectrum reactors

> 265 PWRs, 92 BWRs, 48 CANDU, 18 AGRs, 15 LGR and only one LMFBR

- Currently dominant open fuel cycle, in which uranium fuel is irradiated, discharged and replaced with new uranium fuel, has resulted in the gradual accumulation of large quantities of highly radioactive or fertile materials in the form of Depleted Uranium, Plutonium, Minor Actinides (MA) and Long-Lived Fission Products (LLFP)
- ~2500 tons of spent fuel are produced annually in the EU containing ~25 tons of Pu, ~3.5 tons of MAs (Np, Am, and Cm) and ~3 tons of LLFPs (Tc, Cs and I)
- In EU spent fuel is reprocessed and some of the separated products have already been utilized in the form of MOX (Mixed Pu/U Oxide) fuels, but not yet in sufficient quantities to significantly slow down the steady accumulation of these materials in storage. Also Japan implemented reprocessing

Nuclear waste transmutation/incineration

Transmutation reactions

Generation IV

Six conceptual nuclear energy systems were selected by the Gen. IV International Forum (GIF) for collaborative R&D

Fast spectrum systems

Apart for ²⁴⁵Cm, minor actinides are characterized by a **fission threshold** around the **MeV**.

In order to transmute actinides, need fast neutrons \rightarrow minimal moderation in intermediate medium \rightarrow (cooling) medium must be gas, sodium, lead, etc.

→ Such isotopes can be burnt in fast reactors or in fast Accelerator Driven Systems (ADS) (neutron spectrum from 10 keV to 10 MeV)

Delayed neutron fraction from FF, e.g.: 235 U = 0.65 % 241 Am = 0.113 %

In **ADS delayed neutrons** emitted by FF are **less important** for the reactor control: **fast ADS** can therefore be fueled with almost any Transuranic element and burn them

Fast ADS → good candidates as transmuters of high activity and long lifetime (thousands of years) Generation III reactor waste into much shorter lifetime fragments (few hundred years), to be stored in temporary surface storage. But further R&D is still needed

The fast reactor

Control rod (e.g. Boron)

Lead as coolant ?

Why Lead as the Coolant for ADS and LFR ?

- ✓ Possibility to eliminate the intermediate loop; SGU installed inside the Reactor Vessel
- Need R&D on effects of water-lead interaction in case of SGTR accident
- Less stringent requirements on reactor leak tightness

Lead has very high boiling point

Reduced core voiding risk (Lead boiling point is 1745°C)

Lead has a higher density than the oxide fuel

- No need for core catcher to face core melt (molten clad and fuel float)
- No risk of re-criticality in case of core melt

Lead is a low moderating medium and has low absorption cross-section.

 No need to have a very compact Fuel Assemblies (FA can have fuel rods spaced large apart; Core pressure loss drastically reduced in spite of the higher density of lead resulting in lower pumping power and higher natural circulation capability)

⇒ Lead has a very low ²¹⁰Po production

- Lead is compatible with existing clad material T91
 - ✓ Operation over long irradiation period and under Oxygen control up to 500°C
 - ✓ More margins with surface coating up to 550-600 °C

Courtesy of L. Mansani, Ansaldo Nucleare SpA, Italy

ADS: a 3-component infrastructure

Proton accelerator

Beam transport system

In ADS, effective multiplication of neutrons is $< 1 \rightarrow$ need an external neutron source \rightarrow accelerator+target

Subcritical reactor

The maximum thermal power P_{th} from the subcritical reactor is limited (and controlled !) by the input beam power P_{beam}

The neutron source

 ✓ Accelerated protons impinging on a thick target are the typical way to produce neutrons

✓ Accelerators today are capable of providing about 1 GeV proton energy with around 1 mA average current \rightarrow a MW beam !

✓ At this energies, the process occuring on heavy nuclei (Fe,W,Pb,...) is **spallation** → e.g. in Pb about 20 neutrons/proton are produced at 1 GeV proton energy

Accelerator requirements

- High neutron production rate (proton or deuteron beams)
- High beam power (high energy E_p and/or current i_p)
- Very high stability (for high-power ADS):very few beam trips during long running times
- Minimal electric power consumption P_{plug}: i.e. optimal P_{plug}/P_{beam} ratio (from 4 to 25 in existing accelerators)

Most of these requirements are more severe than in conventional research accelerators and require, at least for high power ADS, a special design

The European roadmap

Fast Neutron Reactors in the frame of the European Sustainable Nuclear Industrial Initiative (ESNII)

ESNII Roadmap

ADS are envisaged as dedicated facilities for transmuting large amounts of MA in a concentrated approach

ADS technology development has considerable synergy with the R&D required for FNRs and in particular for LFR

ADS is not considered as a potential energy production system (economic reasons), but as a fast neutron irradiation and testing tool which can support the development of FNRs

European Lead Fast Reactor (LFR)/ADS Activities

European Technology Pilot Plant of LFR

European Lead Fast Reactor (LFR)/ADS Activities

ADVANCED PROJECT: EFIT

(European Facility for Industrial Transmutation)

Pure lead-cooled reactor of about 400 MWth with MA burning capability and electricity generation at reasonable cost

- ⇒ EFIT shall be an effective **burner of MA**
- ⇒ EFIT will be loaded with **U-free fuel** containing MA
- ⇒ EFIT will generate electricity at reasonable cost
- ⇒ EFIT will be **cooled by pure lead** (a cooled gas option is also studied)

Fast Reactor Fuel cycle: an example

Theoretical equilibrium fuel cycle for 1500 MW_{th} LFR (ELSY-type)

Considering 0.5% losses in the reprocessing: in the waste there are also: 25 kg/y U, 6 kg/y Pu , 0.3 kg/ MA; fed U must be 580 kg/y

Example of ADS performance

✓ Main design missions of EFIT are effective transmutation rate of the Minor Actinides (MA) and effective electric energy generation

□ Fuelled with only MA (Uranium free fuel)

□CER-CER (Pu,Am,Cm)O2-x – MgO

CER-MET (Pu,Am,Cm)O2-x - 92Mo

 \checkmark Minimize the burn-up reactivity swing without burning and breeding Pu

Fuel cycle and transmutation

Moreover, since in the new reactors the fuel may include non-separated actinides, the proliferation issue (use of Pu to make weapons) would be mitigated

Radiotoxicity=

Activity (how much radioactivity from the material, measured e.g. in Becquerel=decays/sec)

x Dose per Bq (equivalent dose per activity, measures the biological damage, measure in Sievert)

1 Sievert = 1 Joule/Kg (after correction depending on radiation type)

Thank you for your attention !