

- Present status of wind energy use
- Physical and meteorological basics
- Techniques of wind converters
- Off shore windparks
- Wind use in Europe

Status of installed wind power			
	Rated Capacity End of 2013 [GW]	Share worldwide [%]	
China	91	29	
USA	61	19	
Germany	35	11	
Spain	23	7	
India	20	6	
UK	11	3	
Italy	9	3	
France	8	3	
Canada	8	2	
Denmark	5	2	
Remaining countries	48	15	
Total	319	100	

Source: DEWI Magazin, No. 44; Feb. 2014,p.36

New erected capacity 2012: 44.700 MW

Source: http://de.statista.com/statistik/daten/studie/169595/umfrage/marktanteile-der-groessten-windturbinen-produzenten-weltweit/

- Present status of wind energy use
- Physical and meteorological basics
- Techniques of wind converters
- Off shore windparks
- Wind use in Europe

Derivative of the equation with steady velocity of wind v

Kinetic energy E of a mass element Δ m

$$\Delta E = \frac{1}{2} \Delta m v^{2}$$

$$\Delta m = \Delta V \cdot \rho_{L}$$

$$\Delta E = \frac{1}{2} \cdot \mathbf{A} \cdot \rho_{\mathbf{L}} \cdot \mathbf{v}^{3} \Delta_{\mathbf{t}}$$

$$E = \frac{1}{2} A P_L \cdot v^3 \cdot t$$

$$P = \frac{E}{t} = \frac{1}{2} \cdot A \cdot P_L \cdot v^3$$

Efficiency

$$\eta = \frac{P_{el}}{\frac{1}{2} \cdot \rho_{L} \cdot A \cdot v^{3}}$$

V = volume

 $\rho_L = \text{density of air}$ = 1,2 kg/m³

Bird's eye view of horizontally positioned rotor blades

a_A = angle of attack (angle between profile chord and relative approach velocity)

b = pitch angle

g = angle between wind velocity and approach velocity

= relative approach velocity (Es gilt:

u = circumferential velocity

 v_0 = wind velocity in the rotor axis

Bird's eye view of vertically positioned rotor blades w

for the pitch angle applies:

 α_{A} should be optimal,

besides use b as a set variable in accordance to

v₀ and u (revolution)

α_A = f (β, v₀, u) = arctan (v₀/u) - b

RUHR - UNIVERSITÄT BOCHUM

Lehrstuhl für €nergiesysteme
und €nergiewirtschaft
Prof. Dr.-Ing. H.-J. Wogner

Velocity triangle at the rotor blade

 α_A = Angle of attack

 β = Pitch Angle

u = Average circumferential velocity

 v_n = Wind velocity in the rotor plane

w = Relative approach velocity

 F_R = Drag force

 F_A = Lift force

 F_{RS} = Resultant force

F = Tagental component

F_s = Axial component

Percent of total capacity (28 MW)

Percent of total capacity (28 MW)

Source: 250 MW-Auswertebericht: zitiert nach M. Kleemann, FZ Jülich, Vortrag Dehli Januar 2002

- Present status of wind energy use
- Physical and meteorological basics
- Techniques of wind converters
- Off shore windparks
- Wind use in Europe

Definition of the rotor power

Dependence of the power coefficient c_p

c_p interdepends with three factors:

- Blade design, i.e. ratio of buoyancy factor to friction factor = glide ratio.
 The glide ratio affects the tip speed ratio strongly.
- 2. Ratio blade tip velocity to wind velocity = tip speed ratio λ Dutchmen windmills: $\lambda = 2$ -4 Modern 3-blade conversion systems: $\lambda = 3$ -12 Limitation of the tip speed ratio in practice due to sound emissions (blade tip velocity contributes to sound emissions with the power of six)
- 3. Ratio of the sum of all blade areas to the rotor circular area A = solidity ratio. which is simplified the number of rotor blades.

"Cooking recipes"

for dimensioning of wind energy conversion systems

- High glide ratios lead to high tip speed ratios and therefore to a large power coefficient c_p
 - Modern converters with good aerodynamic profiles rotate quickly.
- Simple profiles with a smaller glide ratio have smaller tip speed ratios. Therefore is a large solidity ratio required to achieve an increase of the power coefficient.
 - → Slow rotating converters have poor aerodynamic profiles and a high number of blades
- 3. Glide ratio and tip speed ratio have a larger influence on the power coefficient than the solidity ratio.
 - → Number of blades for fast rotating converters has a secondary relevance (in practice mostly 2-3).

Source: Nordex AG

Source: ENERCON GmbH

Adjusting of the revolutions and the line frequency with:

- · controllable gearing or
- changeable number of pole pairs (electrical gearing) or
- asynchronous generator with extended slip or
- intermediate direct currency link

Source: "Das letzte Fundament", VDI Nachrichten No. 46, November 2013

- Present status of wind energy use
- Physical and meteorological basics
- Techniques of wind converters
- Off shore windparks
- Wind use in Europe

Source: Sonne, Wind und Wärme 10/2012

© Doti 2009

Monopile

- until 20 m deep of water
- Steel- or concrete construction

Gravity foundation

- until 10 m deep of water
- Steel- or concrete construction

Tripod, Jacket

- more than 20 m deep of water
- Steel construction

Photo: Helmut Müller; Sonne, Wind und Wärme 4/2012

Foto: Große Boeckmann, August 2008

 $Source: http://www.siemens.com/press/pool/de/pressebilder/2013/photonews/300dpi/PN201308/PN201308-04_300dpi,jpg$

Source: http://www.siemens.com/press/pool/de/pressebilder/2013/photonews/300dpi/PN201308/PN201308-05_300dpi.jpg

Source: http://www.siemens.com/press/pool/de/pressebilder/2012/photonews/300dpi/PN201209/PN201209-01_300dpi.jpg

 $Source: http://www.siemens.com/press/pool/de/pressebilder/2012/photonews/300dpi/PN201204/PN201204-06e_300dpi.jpg$

Source: "Germanys's Troubled Offshore Wind Offensive"; Spiegel Online; http://cdn3.spiegel.de/images/image-395626-galleryV9-ynkq.jpg

- Present status of wind energy use
- Physical and meteorological basics
- Techniques of wind converters
- Off shore windparks
- Wind use in Europe

Investment plan	Costs [€/kW]	
Hub height	< 120 m	> 120 m
Wind power station, transport, installation	1150	1340
Foundation	70	
Grid connection	70	
Site development (lanes)	40	
Planning, environmental measures, concession, others	190	
Total	1520	1710

Operating costs: 5,1 ct/kWh (Average over 20 years operating time)			
Service, reparation, others	50 %		
Rent	20 %		
Management (technical and business)	20 %		
Reserve for unforeseen events	5 %		
Insurance	5 %		

Source: Deutsche WindGuard GmbH; Kostensituation der Windenergie an Land in Deutschland, Stand 2013

- Quota system
- Feed in compensation
- Feed in premiums
- Combination of feed in compensation and quota system
- Combination of feed in compensation and premiums

Source: Fraunhofer IST et al.; 02/2012

2012 Statistical value (175 GW)

(Nuclear power: 0,0%)

2024 Objective of government (225 GW) (Scenario B)

