Control of light for precision measurement

J. Ye JILA, NIST & University of Colorado

Fermi School Course 191 - Quantum Matter at Ultralow Temperatures, July 7, 2014

Quantum matter & metrology

Martin et al., Science 341, 632 (2013); Zhang et al., Science, in press (2014).

Precision Measurement

Many-particle Quantum systems

Many-body quantum systems advance the fundamental limit for measurement Precision measurement determines microscopic properties & dynamics

Lecture I: Light control for precision measurement

Lecture II: Clock and quantum matter

Lecture III: Molecular quantum gas – a new frontier

> - A remarkable convergence of Ultracold, Ultrafast, Ultrastable, Ultraprecise

Light in modern science

What makes a versatile photon laboratory?

Scientifically useful photons span many dimensions

Spectral resolution - Nature's finger prints

Dispersive Spectrometer

- Measure wavelength
- Resolution 10⁻⁶

ca. 1660 I. Newton

ca. 1960

Laser spectroscopy

- Measure frequency
- Resolution 10⁻¹⁵

C. Townes

Nature's high Q oscillators

The landscape of the electromagnetic spectrum

Zoom in anothion times

Phase control of light Phase-coherent synthesis of the electromagnetic spectrum

First, make the field steady -Stable optical cavity

Cavity length 1 m : fits 10⁶ optical waves Finesse 10⁵ : error amplified by 10⁵ Division of a cycle: 10⁵ (10⁻⁶) (10⁻¹¹) (10⁻¹⁶)

Laser is the Central Ruler of Time & Space

Cavity length $L \simeq 1 \text{ m} \rightarrow \Delta L \simeq 10^{-16} \text{ m}$ (size of a nucleus: 10^{-14} m)

Connected by the speed of light, Length joins Time/Frequency as the most accurately measureable quantity.

Ludlow *et al.,* Opt. Lett. **32**, 641 (2007).

Coherence - how long a wave lasts

Beating of two sound waves (10³ Hz)

Counting the light ripple (10¹⁵ Hz)

A Ruler for the Universe

Optical coherence & spectral resolution

Cavity length $L \sim 1 \text{ m} \rightarrow \Delta L \sim 10^{-16} \text{ m}$ Mirror Thermal Noise: a fundamental process

Thermal noise: a challenge for all !

- The best interferometers (at all scales) are thermal noise limited
- Many scientific communities attempting to make similar advances

15 μm

Single-crystal optical cavity

Crystalline optical coating (AlGaAs)

PTB – JILA: Silicon crystal cavity Nature Photon. **6**, 687 (2012). Vienna – JILA: 10⁻¹⁷ feasible Nature Photon. **7**, 644 (2013).

Time - frequency correspondence (from one optical frequency to many)

Time (ns)

3 modes

Group vs. Phase Velocity

- In any material, the group and phase velocities differ
- Carrier phase slowly drifts through the envelope as a pulse propagates

Group vs. Phase in Modelocked Lasers

Each emitted pulse has a distinct envelope-carrier phase

- due to group-phase velocity difference inside cavity

Time- and frequency-domain connections

 f_r = Comb spacing f_o = Comb offset from harmonics of f_r $\Delta \phi$ = Phase slip b/t carrier & envelope each round trip

$$2\pi v_n \cdot \tau + \Delta \phi = 2n\pi \rightarrow$$
$$v_n = nf_r - \Delta \phi f_r / 2\pi$$
$$\overbrace{f_o}^{f_o}$$

Hänsch, 1978, Garching and Boulder 1999 – 2000 Udem *et al.*, Phys. Rev. Lett. **82**, 3568 (1999). Diddams *et al.*, Phys. Rev. Lett. **84**, 5102 (2000).

Frequency spectrum in optical frequency synthesis

The First Optical Frequency Chain

NBS (NIST): measurement of speed of light, 1972

J. L. Hall & J. Ye, "NIST 100th birthday", Optics & Photonics News 12, 44, Feb. 2001

Ultrafast meets ultraprecision - A million lasers with 10⁻¹⁶ precision

Optical phase comparison - two spatially & spectrally separated lasers

Foreman et al., Phys. Rev. Lett. 99, 153601 (2007).

Precise distribution of ultra-stable signals

Foreman, Holman, Hudson, Jones, & Ye, Rev. Sci. Instrum. 78, 021101 (2007). SYRTE, PTB, NIST, INRIM, ...

Optical Atomic Clock

Bloom et al., Nature 506, 71 (2014).

Boyd *et al.,* Science **314**, 1430 (2006).

Optical Arbitrary Waveform Generation

Thorpe *et al.,* Science **311**, 1595 (2006). Stowe *et al.,* PRL **96**, 153001(2006). PRL **100**, 203001 (2008). XUV comb Jones *et al*. PRL **94**, 193201 (2005). C. Gohle *et al.*, Nature **436**, 234 (2005).

Direct Frequency Comb Spectroscopy

Coupling a comb into a cavity

Massively parallel detections of molecules

Thorpe et al., Science 311, 1595 (2006). Chem. Rev. 2010; Phys. Rev. Lett. 2011.

Wide spectral coverage

Broad spectral coverage

High sensitivity (1 x 10⁻¹⁰ cm⁻¹Hz^{-1/2}; parts per 10⁹)

High resolution

Real time acquisition

Charting the extreme ultraviolet landscape (Ultrahigh-resolution XUV spectroscopy)

- Precision tests of fundamental physics
- Simple 3-body systems (i.e. helium), but also complex molecules
- Nuclear transitions
- Highly charged ions and precision test of QED
 - Ground state Lamb shift scales as Z⁴
 - Higher-order corrections scale as Z⁶

High-harmonic generation — VUV, EUV, soft X-ray

Three step model

Step 1: Ionization

Step 2: Field Reversal

Step 3: Recombination

Corkum, Phys Rev Lett 71, 1994

Coherent VUV and XUV radiation

Harmonic Generation with a train of IR pulses-Harmonic Generation with a single IR pulse a train of attosecond pulses

High-harmonic generation

Intra-cavity HHG at high rep rate

Jones, Moll, Thorpe, Ye, PRL 94, 193201 (2005). Gohle et al., Nature 436, 234 (2005).

<u>JILA</u>:

Allison *et al.* PRL **107**, 183903 (2011) Cingöz *et al.* Nature **482**, 68 (2012) Benko *et al.*, Nature Photon. **8**, 530 (2014). **MPQ:**

Pupeza *et al.* Nat. Photon. **7**, 608 (2013) Pupeza *et al.* PRL **112**, 103902 (2014)

U. Arizona:

Carlson *et al.* Opt. Lett. **36**, 2991 (2011) Lee *et al.* Opt. Exp. **19**, 23315 (2011)

UBC:

Mills et al. J. Phys. B. 45, 14201 (2012).

High resolution XUV Spectroscopy Cingöz et al., Nature 482, 68 (2012).

Direct heterodyne beat of two XUV combs

Δf

- Direct measurement of phase of HHG (XUV comb)
- Phase probe of attosecond processes

Direct phase measurement of attosecond phys.

Bryce Bjork Bryan Changala

Over the years ...

F. Adler (NIST) T. Alison (Stony Brook) S. Blatt (Harvard) J. Bochinski (Faculty, NC State) M. Boyd (AO Sense) G. Campbell (Faculty, U. Maryland) L. Chen (Faculty, WIPM) A. Cingoz (AOSense) A.J. Fleisher (NIST) S. Foreman (U. San Fran) K. Holman (Lincoln Lab) E. Hudson (UCLA) D. Hudson (Sydney) T. Ido (Tokyo NICT) D. Jones (UBC) R. J. Jones (U. Arizona) Y. Lin (Nat. Inst. Metrology) T. Loftus (AO Sense) H. Lewandowski (Colorado) A. Ludlow (NIST)

http://JILA.Colorado.edu/YeLabs

B. Lev (Stanford U.) A. Marian (MPG, Berlin) K. Moll (Precision Photon.) M. Notcutt (ATF/Stable Lasers) S. Ospelkaus (U. Hannover) A. Pe'er (Bar-Ilan U.) B. Sawyer (NIST) T. Schibli (Colorado) L. Sinclair (NIST) M. Stowe (Lincoln Lab) M. Thorpe (NIST) D. Wang (U. Hong Kong) X. Xu (ECNU) T. Yoon (Korea Nat. U.) T. Zanon (Univ. Paris VI) T. Zelevinsky (Columbia U.)

L.-S. Ma, J. L. Hall, S. Cundiff, S. Diddams, E. Cornell, ...