Ultracold molecules - New frontiers in quantum & chemical physics Jun Ye JILA, NIST & CU, Boulder Fermi School Course 191 Quantum Matter at Ultralow Temperatures July 9, 2014

Ultracold quantum gases

Bose-Einstein condensate

superfluidity

T = 100 nK N = 10⁶ atoms n = 10^{13} cm⁻³

Superfluidity – MOTT insulator

Fermi superfluidity

Atomic Interactions

We can understand & control the interactions!

interaction strength

Quantum gas of polar molecules

- Extend capability to control complex quantum systems
- Study frontier problems in strongly correlated quantum many-body physics, with
 - well-understood microscopics
 - tunable, long-range interactions
 - non-equilibrium quantum dynamics

Quantum metrology, Correlated material,

Chemistry

Control reactions at ultralow energy

Hudson et al., Phys. Rev. A 73, 063404 (2006).

Controlled molecular collisions, Ultracold chemical reactions

 Molecules in well-defined quantum states (internal & external)

 Long-range approaches precisely controlled

"Can a pico-eV knob control a 1 eV reaction ?" - J. L. Bohn

Ultracold molecules: Test fundamental principles

Hinds, Physica Scripta (1997).

Electron Electric Dipole Moment ?

How do we cool molecules

Make Feshbach molecules

Weakly bound molecules

- no dipole moment
- inelastic collisions

Transfer the molecules to the ground state

Light carries away the binding energy (& preserves the entropy)

Going to really deep ground potential

The problem: ~ zero wavefunction overlap (pre 2008)

Ultracold meets ultrafast

Hiking through the forest of potentials

Coherent two-photon transfer

Ospelkaus *et al.*, Nature Phys. **4**, 622 (2008); Ni *et al.*, Science **322**, 231 (2008). Hanns-Christoph Nägerl, Innsbruck, Cs₂

Good Franck-Condon for both up and down transitions.

Population transfer

- 92% efficiency
- Fully coherent (no heating)

Hyperfine structure for ${}^{1}\Sigma$ (v=0, N=0)

Hyperfine structure for ${}^{1}\Sigma$ (v=0, N=0)

S. Ospelkaus et al., Phys. Rev. Lett. 104, 030402 (2010).

Trapped molecules in the lowest energy state (electronic, vibrational, rotational, hyperfine)

Cold collisions between identical Fermions

(1) Particles behave like waves

(2) Angular momentum is quantized

L = 1, *p*-wave collisions **Fermions** \rightarrow

Ultracold quantum chemistry

Ospelkaus et al., Science **327**, 853 (2010).

At low T, the quantum statistics of fermionic molecules suppresses chemical reaction!

distance between the molecules

Ultracold quantum chemistry

Ospelkaus et al., Science **327**, 853 (2010).

Distinguishable molecules do not enjoy the suppression \rightarrow rate is x 100 higher !

distance between the molecules

 β (p)= 1.2(3)x10⁻⁵cm³/(s K) T

Anisotropic dipolar collisions K.-K. Ni et al., Nature 464, 1324 (2010).

Collisions under a single partial wave $(L = 1\hbar)$.

2D quantum gas - suppress losses

2D quantum gas - suppress losses

3D Optical Lattice - ruins all that beautiful chemistry

A. Chotia et al., "Long-Lived Dipolar Molecules and Feshbach Molecules in a 3D Optical Lattice", Phys. Rev. Lett. **108**, 080405 (2012).

Characterize filling factor in 3D lattice

Continuous Quantum Zeno suppression

- Create an incoherent spin mixture.
- Lower lattice along **y** to allow tunneling.
- Measure the loss rate.

$$\frac{dN_{\downarrow}}{dt} = -\frac{\kappa N_{\downarrow}^2}{N_{\downarrow,0}} \qquad \kappa = 8\Gamma_{\rm eff}n_0$$
$$\Gamma_0 \gg J_{\rm t} \implies \Gamma_{\rm eff} = \frac{2J_{\rm t}^2}{\Gamma_0}$$

Syassen et al., Science 320, 1329 (2008).

Characterize filling factor in 3D lattice

Continuous Quantum Zeno suppression

Loss ~ J_t^2/Γ_0

Dipolar exchange interaction in a 3D lattice

N = 1>

N=0>

Barnett, Petrov, Lukin, Demler, Phys. Rev. Lett. **96**, 190401 (2006). Micheli, Brennen, & Zoller, Nature Phys. **2**, 341 (2006). Gorshkov *et al.*, Phys. Rev. Lett. **107**, 115301 (2011).

Molecules (material) are physically pinned down, but spins (excitations) can be exchanged and mobile !

Many-body quantum localization – an old/new frontier (David Huse, Gora Shlyapnikov, Misha Lukin, Eugene Demler ...)

Spin exchange in ultracold systems

Super-exchange for atoms: 2nd order process via tunneling.

S. Trotsky et al., Science 319, 5861 (2008)

Spin exchange for molecules: long-range dipolar interactions -- motion & spin decoupled.

Interaction strength in guantum magnetism $\langle \downarrow |\hat{d}| \downarrow \rangle = \langle \uparrow |\hat{d}| \uparrow \rangle = 0$ $\langle \downarrow |\hat{d}| \uparrow \rangle \neq 0$ $H = \sum_{i>j} V_{dd}(\mathbf{r}_i - \mathbf{r}_j) \left[J_z S_i^z S_j^z + \frac{J_\perp}{2} \left(\underbrace{S_i^+ S_j^- + S_i^- S_j^+}_{\prime} \right) \right]$ $=S_{i}^{x}S_{j}^{x}+\overset{\mathbf{v}}{S}_{i}^{y}S_{j}^{y}$ Flip-flop term $\frac{1 - 3\cos^2\theta}{|\mathbf{r_i} - \mathbf{r_j}|^3}$ -0.19-0.09 -0.09 0.19 -1.00 0.19 -0.09

The oscillation frequency for a pair of molecules is $J_{\perp}/2h$.

 $\frac{J_{\perp}}{h} = \frac{d_{\uparrow\downarrow}^2}{4\pi\epsilon_0 h a_2^3}$

A Dipolar Spin-Lattice Model B. Yan et al., Nature 501, 521 (2013).

- Start with N=0.
- Drive a coherent spin superposition. $\frac{1}{\sqrt{2}}(|\uparrow\rangle+|\downarrow\rangle)$
- Probe spin coherence at T. (Ramsey spectroscopy)

State-insensitive optical lattice Nyenhuis et al., PRL 109, 230403 (2012).

Measure trap strength with parametric heating

Angle-dependent polarizability

Ramsey & Spin-echo Spectroscopy $\pi/2$ $\pi/2$ π T/2 T/2 Scan θ for Ramsey fringe. θ ñ 1.0-60 $N=1.77 \times 10^4$ 0.8 55 $N=5x10^{3}$ Erequency (Hz) 20 45 40 Contrast 0.6 0.4 0.2 35 48(2) Hz $(\frac{J_{\perp}}{2} \sim 51 \text{ Hz})$ 0.0 30 20 80 100 40 60 T (ms) 60 0 0 5 25 15 20 10 Number (10³)

Disentangling pulses

A multi-pulse sequence to suppress two particle interactions (inspired by Misha Lukin, Hans-Peter Büchler)

$$\frac{1}{\sqrt{2}}(|\downarrow\rangle + |\uparrow\rangle) \otimes \frac{1}{\sqrt{2}}(|\downarrow\rangle + |\uparrow\rangle) = \frac{1}{2}(\underbrace{\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle}_{e^{-i(J/\hbar)(T/B9)}} + \underbrace{\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle}_{e^{-i(J/\hbar)(T/B9)}} + \underbrace{\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle}_{e^{-i(J/\hbar)(T/B9)}}$$

$$\left(\frac{\pi}{2}\right)_{x} \quad |\downarrow\uparrow\rangle + |\uparrow\downarrow\rangle \iff |\downarrow\downarrow\rangle + |\uparrow\uparrow\rangle$$

Suppressing the oscillations

- The spin-flip terms create entanglement
- The $(\pi/2)_x$ pulse swaps the eigenstates of the Hamiltonian, allowing the spins to rephase.

Sum of pair-wise interactions or many-body interactions

Simulation with "Moving Average Cluster Expansion"

Hazzard et al., arXiv:1402.2354

Standard

MACE

- For each spin select an optimal cluster size
- Solve the dynamics for that cluster: $\langle S_i^{\chi} \rangle$
- Total dynamics: Sum over clusters $\sum_{i=1}^{N} \langle S_i^{x} \rangle$

Control dipolar interaction

One fitting parameter (density) reproduces the experiment

Coherence time scales as 1/N

Experiment / theory benchmarking each other

Special Thanks (KRb team):

Former members:

Brian Neyenhuis Amodsen Chotia Marcio de Miranda Dajun Wang Silke Ospelkaus Kang-Kuen Ni Avi Pe'er Josh Zirbel

<u>Theory collaborations</u>: J. L. Bohn, P. S. Julienne, S. Kotochigova, M. Lukin, <u>A. M. Rey</u>, P. Zoller

Science with cold molecules

quantum information

Applications

ultracold quantum chemistry

precision measurement & fundamental test

