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Scale invariance and non-relativistic CFT’s Nishida/Son ’07

dilatation operator generates x→ eλx and t→ e2λ t

Ĥ is scale-invariant if i
[
Ĥ, D̂

]
= 2 Ĥ = d

dt

∫
xiĵi

momentum balance ∂tĵi = −∂jΠ̂ij →

d
dtD̂ = 2

∫
ε̂ =

∫
xi∂tĵi = −

∫
xi ∂jΠ̂ij =

∫
Π̂ii

scale invariance implies 2ε = Πii trace of stress tensor

conformal transformation x→ x/(1 + λt) and t→ t/(1 + λt)

Ĥ is conformal-invariant if i
[
Ĥ, Ĉ

]
= D̂ = d

dt

∫
x2n̂/2 →

breathing mode in a trap at ωB = 2ωtrap Castin/Werner ’06
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The unitary gas as a quantum critical point Nikolic/Sachdev ’07

action of free Fermions S0 =
∫
dτ

∫
ddx

[
ψ?∂τψ + ~2

2m |∇ψ|
2
]

is invariant under x→ xe−l, τ → τe−zl and ψ → ψ edl/2 →

dyn. exponent z = 2 and dim [ψ] = d/2

chemical potential Lµ = −µ|ψ|2 scales like µ→ µe2l → dim [µ] = 2

add zero range interaction Lint = u0ψ
∗
↑ψ
∗
↓ψ↓ψ↑ → dim [u0] = 2− d

Superfluid

Vacuum

BCS

BEC

scaling of the dim.less coupling

u = 2mSdΛ
d−2 u0 under Λ→ Λe−l

du/dl = εu− u2/2 with ε = 2− d
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unitary Fermions → zero density QCP

phase diagram at finite T

no well defined quasiparticles

in the critical regime |µ| � kBT

ar
X

iv
:1

20
4.

19
80

v1
  [

co
nd

-m
at

.q
ua

nt
-g

as
]  

9 
A

pr
 2

01
2

Quantum critical transport in the unitary Fermi gas

Tilman Enss
Physik Department, Technische Universität München, D-85747 Garching, Germany

The thermodynamic and transport properties of the unitary Fermi gas at finite temperature T
are governed by a quantum critical point at T = 0 and zero density. We compute the universal
shear viscosity to entropy ratio η/s in the high-temperature quantum critical regime T ! |µ| and
find that this strongly coupled quantum fluid comes close to perfect fluidity η/s = !/(4πkB). Using
a controlled large-N expansion we show that already at the first non-trivial order the equation of
state and the Tan contact density C agree well with the most recent experimental measurements
and theoretical Luttinger-Ward and Bold Diagrammatic Monte Carlo calculations.

PACS numbers: 03.75.Ss, 05.30.Fk, 51.20.+d

I. INTRODUCTION

The unitary Fermi gas is a basic many-body prob-
lem which describes strongly interacting fermions ranging
from ultracold atoms near a Feshbach resonance [1–3] to
dilute neutron matter. The properties in the dilute limit
are independent of the microscopic details of the interac-
tion potential and share a common universal phase dia-
gram. A quantum critical point (QCP) at zero tempera-
ture governs the critical behavior in the whole phase dia-
gram as a function of temperature T , chemical potential
µ, detuning from the Feshbach resonance ν, and magnetic
field h [4–6]. In the spin balanced case h = 0, and at res-
onance ν = 0 the Fermi gas is unitary and scale invariant.
In terms of the thermal length λT = !(2π/mkBT )1/2 the
density equation of state nλ3

T = fn(µ/kBT ) is a universal
function which has been measured experimentally [7, 8].
The unitary Fermi gas becomes superfluid at a univer-
sal Tc(µ) ≈ 0.4 µ [8], see Fig. 1. In this work we focus
on the quantum critical regime T > 0 above the QCP
at h = 0, ν = 0 and µ = 0, where nλ3

T = fn(0) ≈ 2.9
is a universal constant. Since the thermal length λT is
comparable to the mean particle spacing n−1/3, quan-
tum and thermal effects are equally important. There is
no small parameter, and it is a theoretical challenge to
compute the critical properties. Recent measurements [8]
and computations [9] of the equation of state now agree
to the percent level. However, a precise determination of
transport properties is much more demanding.

In order to reliably estimate transport coefficients we
perform controlled calculations in a large-N expansion
[5, 10]. We obtain new results for the Tan contact den-
sity [11–13] and the transport properties in the quantum
critical region. The shear viscosity η = !λ−3

T fη(µ/kBT )
assumes a universal value at µ = 0. In kinetic theory
η = P τ is given by the pressure P times the viscous
scattering time τ , which is related to the incoherent re-
laxation time of the gapless critical excitations above the
QCP. The entropy density s = kBλ

−3
T fs(µ/kBT ) at µ = 0

is exactly proportional to the pressure, s = 5P/2T , and
the viscosity to entropy ratio (at N = 1)

η

s
=

2

5
T τ ≈ 0.74

!
kB

(1)

FIG. 1: Universal phase diagram of the unitary Fermi gas.

is a universal number independent of temperature. A tem-
perature independent ratio η/s = !/(4πkB) has been
found in certain string theories [14] and is conjectured
to hold as a lower bound in other models [15]. Strongly
interacting quantum fluids which saturate this bound are
called perfect fluids [16]. Among real non-relativistic flu-
ids the unitary Fermi gas comes closest to the bound and
is almost perfect [17–19], while for graphene the viscosity
decreases logarithmically with temperature in the quan-
tum critical regime [20].

We compare our large-N results at N = 1 [21] with
experimental measurements [8, 18, 22, 23] and other the-
oretical approaches, including self-consistent Luttinger-
Ward [17, 24, 25] and Bold Diagrammatic Monte Carlo
(BDMC) [9] calculations, see Table I.

experiment large-N LuttWard BoldDiagMC

nλ3
T 2.966(35) [8] 2.674 3.108 [25] 2.90(5) [9]

P [nkBT ] 0.891(19) [8] 0.928 0.863 [25] 0.90(2) [9]

s [nkB ] 2.227(38) [8] 2.320 2.177 [25] 2.25(5) [9]

C [k4
F ] 0.0789 0.084 [17] 0.080(5) [26]

η/s [!/kB ] 1.0(2) [18, 27] 0.741 0.708 [17]

TABLE I: Thermodynamic properties and transport coeffi-
cients of the unitary Fermi gas in the quantum critical region
µ = 0, T > 0: density n, pressure P , entropy density s, Tan
contact density C, and shear viscosity η, with Fermi momen-
tum kF = (3π2n)1/3. Large-N results extrapolated to N = 1.

single length scale λT → density nλ3
T ' 3.1 vanishes ∼ T3/2

universal amplitude ratio e.g. s(T ) ∼ kB · λ−3
T and η(T ) ∼ ~ · λ−3

T

→ η/s ' 0.7~/kB characterizes a strongly coupled QFT

dimensional analysis suffices if there is no anomalous dimension !
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The unitary gas as a ’perfect fluid’

Definition A fluid is perfect if
η

s
≡

~
4πkB

Kovtun/Son

Starinets ’05 (SSYM) All known fluids have
η

s
≥

~
4πkB

!!
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tional to the density of quasiparticles, s! kBn. Therefore,
!=s! k"1

B "mft#=n. Now #=n is the average energy per
particle. According to the uncertainty principle, the prod-
uct of the energy of a quasiparticle #=n and its mean free
time "mft cannot be smaller than !h, otherwise the quasi-
particle concept does not make sense. Therefore we obtain,
from the uncertainty principle alone, that !=s * !h=kB,
which is (15) without the numerical coefficient of
1=#4$$. We also conclude that !=s is much larger than
!h=kB in weakly coupled theories (where the mean free time
is large).

Another piece of evidence supporting the bound (15)
comes from a recent calculation [21] of !=s in the N % 4
supersymmetric SU#Nc$ Yang-Mills theories in the regime
of infinite Nc and large, but finite, ’t Hooft coupling g2Nc.
The first correction in inverse powers of g2Nc corresponds
to the first string theory correction to Einstein’s gravity.
The result reads

!
s

% !h
4$kB

!

1& 135%#3$
8#2g2Nc$3=2

& ' ' '
"

; (16)

where %#3$ ( 1:2020 569 . . . is Apéry’s constant. The cor-
rection is positive, in accordance with (15). It is natural to
assume that !=s is larger than the bound for all values of
the ’t Hooft coupling (Fig. 1).

The bound (15), in contrast to the entropy bound [22]
and Bekenstein’s bound [23], does not involve the speed
of light c and hence is nontrivial when applied to non-
relativistic systems. However, the range of applicability of
(15) to nonrelativistic systems is less certain. On the one
hand, by subdividing the molecules of a gas to an ever-
increasing number of nonidentical species one can increase
the entropy density (by adding the Gibbs mixing entropy)
without substantially affecting the viscosity. On the other

hand, the conjectured bound is far below the ratio of !=s
in any laboratory liquid. For water under normal condi-
tions, !=s is 380 times larger than !h=#4$kB$. Using stan-
dard tables [24,25] one can find !=s for many liquids and
gases at different temperatures and pressures. Figure 2
shows temperature dependence of !=s, normalized by
!h=#4$kB$, for a few substances at different pressures. It
is clear that the viscosity bound is well satisfied for these
substances. Liquid helium reaches the smallest value of
!=s, but this value still exceeds the bound by a factor of
about 9. We speculate that the bound (15) is valid at least
for a single-component nonrelativistic gas of particles with
spin 0 or 1=2.

Discussion.—It is important to avoid some common
misconceptions which at first sight seem to invalidate the
viscosity bound. Somewhat counterintuitively, a near-ideal
gas has a very large viscosity due to the large mean free
path. Likewise, superfluids have finite and measurable
shear viscosity associated with the normal component,
according to Landau’s two-component theory.

The bound (15) is most useful for strongly interacting
systems where reliable theoretical estimates of the viscos-
ity are not available. One of such systems is the quark-
gluon plasma (QGP) created in heavy ion collisions which
behaves in many respects as a droplet of a liquid. There are
experimental hints that the viscosity of the QGP at tem-
peratures achieved by the Relativistic Heavy Ion Collider
is surprisingly small, possibly close to saturating the vis-
cosity bound [26]. Another possible application of the
viscosity bound is trapped atomic gases. By using the
Feshbach resonance, strongly interacting Fermi gases of
atoms have been created recently. These gases have been
observed to behave hydrodynamically [27] and should
have finite shear viscosity at nonzero temperature. It would

0

h̄

4πkB

η

s

g2Nc

FIG. 1 (color online). The dependence of the ratio !=s on the
’t Hooft coupling g2Nc in N % 4 supersymmetric Yang-Mills
theory. The ratio diverges in the limit g2Nc ! 0 and approaches
!h=4$kB from above as g2Nc ! 1. The ratio is unknown in the
regime of intermediate ’t Hooft coupling.
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Viscosity bound

4π η
sh

FIG. 2 (color online). The viscosity-entropy ratio for some
common substances: helium, nitrogen and water. The ratio is
always substantially larger than its value in theories with gravity
duals, represented by the horizontal line marked ‘‘viscosity
bound.’’

PRL 94, 111601 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
25 MARCH 2005

111601-3

viscosity for helium, 
nitrogen, and water

[Kovtun, Son, Starinets 2005]
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momentum balance ∂t(ρvi) + ∂jΠij = 0

Πij = pδij + ρvivj − η
(
∂ivj + ∂jvi −

2

3
δij · ∂kvk

)
− ζδij · ∂kvk

positivity η ≥ 0 and ζ ≥ 0 due to dS/dt ≥ 0

liquids thermally activated → η(T ) grows as T ↓

gases η =
1

3
mn〈v〉` '

√
mkBT/σ(T ) grows as T ↑

A quantum limit on the viscosity ?

mean free path ` & n−1/3 average velocity 〈v〉 & ~
m
n1/3

gives η ≥ αη · ~n e.g. αη ' 0.5 for 4He at 2K
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exp. data on viscosity and spin diffusion

 1

 10

 0.1  1  10

m
D

s
/− h

T/TF

Luttinger-Ward theory
Sommer et al. (2011)

classical gas

Cao ... Science 331 (2011) and Sommer ... Nature 472 (2011)
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shear viscosity of the unitary gas

Boltzmann-limit η(T � TF ) = 2.8 ~n(T/TF )3/2 = 4.2
~
λ3
T

(density drops out!), well defined quasipart. ~/τη � kBT

superfluid below Tc ' 0.16TF has finite viscosity due to

a) phonon interactions: η(T ) ∼ T−5 as T � Tc Rupak/Schäfer ’07

b) fermionic qp’s: η(T )→ const as T → 0 Pethick/Smith ’75

minimum is observed in 4He

just below Tλ

I. Experiment (Liquid Helium)

1 1.5 2
T [K]

10

20

50

100

200

 η
 [µ

P]

Kapitza (1938)

viscosity vanishes below Tc

capillary flow viscometer

Hollis-Hallett (1955)

roton minimum, phonon rise

rotation viscometer

η/s ! 0.8 !/kB

Can mass flow without friction?

• flow without friction?                                   shear viscosity η:

Measures of Perfection

Viscosity determines shear stress (“friction”) in fluid flow

F = A η
∂vx

∂y

Dimensionless measure of shear stress: Reynolds number

Re =
n

η
× mvr

fluid flow
property property

• [η/n] = !

• Relativistic systems Re =
s

η
× τT

Measures of Perfection

Viscosity determines shear stress (“friction”) in fluid flow

F = A η
∂vx

∂y

Dimensionless measure of shear stress: Reynolds number

Re =
n

η
× mvr

fluid flow
property property

• [η/n] = !

• Relativistic systems Re =
s

η
× τT

F = A ⌘
@vx

@y

Heikkilä & Hollis-Hallett 1955

Helium-4

• kinetic theory suggests:

• holographic duality:

perfect fluidity 

conjectured as universal lower bound
Kovtun, Son, Starinets 2005

Schäfer, Teaney 2009

⌘

s
=

~
4⇡kB

⌘/s & O(1) ~/kB
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Viscosity in linear response: Kubo formula

• viscosity from stress correlations (cf. hydrodynamics):

with stress tensor                                                 (cf. Newton         )

• correlation function (Kubo formula):   Enss, Haussmann & Zwerger Ann. Phys. 2011

• transport via fermions and bosonic molecules: very efficient description, 
satisfies conservation laws, scale invariance and Tan relations  Enss PRA 2012

• assumes no quasiparticles: beyond Boltzmann kinetic theory, works near Tc

⇧̂xy =
X

p,�

pxpy

m
c†
p�cp�

@vx

@y

⌘(!) =
1

!
Re

Z 1

0

dt ei!t

Z
d3x

D⇥
⇧̂xy(x, t), ⇧̂xy(0, 0)

⇤E

9

the fermionic and bosonic self-energies are local in real
space. Hence, the coupled equations are solved efficiently
by going back and forth between real and Fourier space.

In the second step GXX′ and ΓXX′ are used as input
for the self-consistent equations (5.21)–(5.26) to calculate

the viscosity response functions T̃!, S̃!. Again, the inte-
gral equations (5.21) and (5.25) become algebraic and are
solved in Fourier space, while the other equations remain
local in real space. Note that the spatial Fourier trans-
form between radial distances r and radial wavenumber
k for the partial-wave component ! is given by

T!(k) = 4π(−i)!

∫ ∞

0

dr r2 j!(kr)T!(r) , (5.27)

T!(r) =
i!

2π2

∫ ∞

0

dk k2 j!(kr)T!(k) . (5.28)

In the third step the correlation function χ!(iωm) is com-
puted from (5.15). It is continued analytically from the
discrete imaginary Matsubara frequencies iωm to the con-
tinuous real frequencies ω via both the Padé method and
a model fit function (cf. section VII). We thus obtain the
retarded correlation function χret

! (ω) = χ′
!(ω) + iχ′′

! (ω).
Finally, the real parts of the viscosities η and ζ are ob-
tained from the correlation functions for ! = 2 and ! = 0
according to (cf. equations (3.2) and (3.3))

Re η(ω) =
Imχret

!=2(ω)

15ω
, (5.29)

Re ζ(ω) =
Imχret

!=0(ω)

9ω
, (5.30)

where the prefactor of η comes from the angular integra-
tion of the spherical harmonics [Y!=2(p̂)]2. Alternatively,
one may solve the integral equation directly for real fre-
quencies where the limit ω → 0 can be taken analytically.
In practice, this approach is useful at high temperatures,
where self-consistency no longer plays a role.

VI. BOLTZMANN-EQUATION LIMIT

In the high-temperature limit T # TF the integral
equations (5.21)–(5.26) can be solved by expanding in
powers of the fugacity

z = eβµ =
4

3
√

π
θ−3/2 + O(θ−3) . (6.1)

To leading order in z, the pair propagator and on-shell
self-energy are given by

Γret(k,Ω) = −i
4πh̄3m−3/2

√
h̄Ω+ 2µ − εk/2

+ O(z) (6.2)

Σret(p, ε = εp − µ) = i
8εF

3π

erf(
√

πp/pT )

p/pF
+ O(z) .

(6.3)

  

FIG. 3: [color online] Diagrammatic contributions to the vis-
cosity correlation function χ!(ω) at first order in the pair
fluctuations: Self-energy (S), Maki-Thompson (MT) and
Aslamazov-Larkin (AL) diagrams.

In the case of on-shell fermions with k = p1 + p2,
h̄Ω + 2µ = εp1

+ εp2
the pair propagator reduces to the

well-known scattering amplitude f(q) = i/q at infinite
scattering length of two particles in vacuum, with rel-
ative momentum q. Note that the exact leading-order
result for the on-shell fermionic self-energy contains a
non-trivial error-function dependence on the ratio of the
momentum p to its thermal value pT that was missing in
previous studies [53]. It is due to the square-root tail in
the pair propagator and gives a noticeable correction at
thermal momenta p % pT . Moreover, this form is indeed
crucial to fulfill the condition of scale invariance, as will
be discussed below.

The fermionic spectral function in the low fugacity,
high temperature limit has most of the spectral weight
concentrated in the coherent peak at ε = εp−µ. The peak

width γp = ImΣret(p, ε) vanishes like εF pF /p ∼ T−1/2

for typical momenta p ≈ pT , consistent with the assump-
tion for the temperature dependence of the relaxation
time introduced by Bruun and Smith [24]. This implies,
in particular, that the fermionic quasiparticles become
well-defined and thus a Boltzmann equation description
is valid in the regime θ # 1.

From a numerical, iterative solution of the integral
equations (5.21)–(5.26) in the high-temperature limit we
obtain η/(h̄n) = 2.80(1) (T/TF )3/2. This fixes the con-
stant in the asymptotic behavior α(θ) = const θ3/2 at
large values of θ of the universal function introduced in
(4.1). Within the error bars, the numerical value agrees
with that obtained from a variational solution of the full
Boltzmann equation, using higher Sonine polynomials
[24, appendix]. The prediction of a simple power-law de-
pendence of the shear viscosity η(T ) ∼ T 3/2 has recently
been verified experimentally in a temperature range be-
tween θ % 1.5 and θ % 7 by measuring the expansion
dynamics of a unitary gas released from an optical trap
[54]. Very good agreement has been found also with the
expected prefactor.

Remarkably, the solution of the transport integral
equation at high temperatures and small frequencies can
also be obtained by a completely analytical approach.
In fact, in the low fugacity limit, one can terminate the
iterative procedure after the first iteration step (correla-
tion function to first order in the pair propagator) and
resum via a memory function approach, a method that
was developed in the context of electrical conductivi-
ties by Götze and Wölfle [55]. The first-order correla-

 η(ω) = (resummed to
 infinite order)
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Dynamic shear viscosity

exact viscosity sum rule 
(nonperturbative check): 

Enss, Haussmann & Zwerger 2011; Enss 2013; cf. Taylor & Randeria 2010

⇡ P ⌧⌘
1 + (!⌧⌘)2

hydro-
dynamics

⇡ C

15⇡
p

m!

2

⇡

Z 1

0

d! [⌘(!) � tail] = P � C

4⇡ma

 0.001

 0.01

 0.1

 1

 10

 100

 0.1  1  10  100  1000

η
(ω

) 
 [

− h
 n

]

ω [EF / −h]

T=10
T=  5
T=  2
T=  1

T=0.5
T=0.16

Enss, Haussmann & Zwerger 2011
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η
/s

  
[− h

/k
B
]

T/TF

su
p

e
rf

lu
id

phonon contrib.
Luttinger-Ward theory

kinetic theory

 1

 10

Tc 0.1  1  10

Shear viscosity/entropy
of the unitary Fermi gas 

phonon
contribution
⇠ T�8

classical limit
⇠ T 3/2

Enss, Haussmann & Zwerger 2011

agrees with large-N 
transport calculation
Enss PRA 2012
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Spin transport with ultracold gases

• experiment: spin-polarized clouds in harmonic trap

• strongly interacting gas [movie courtesy Martin Zwierlein]:

A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011)

bounce!
picture: J. Thomas 2011
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Spin diffusion

• scattering conserves total ⬆+⬇ momentum: mass current preserved
but changes relative ⬆-⬇ momentum: spin current decays

spin diffusion

order of one second, which is an extremely long time compared to the
trapping period (44 ms). The underlying explanation for spin current
reversal and the slow relaxation can be found in the extremely short
mean free path and the high collision rate between opposite-spin
atoms at unitarity. According to the above estimate, the spin diffusivity
is approximately B/m, which for 6Li is (100mm)2 s21. The atom clouds
in the experiment have a length of the order of 100mm, and it takes
them of the order of a second to diffuse through each other. So we are
indeed observing quantum-limited spin diffusion. The initial bounces
will occur when the mean free path of a spin-up atom in the spin-down
cloud is smaller than the spin-down cloud size, that is, when the
mixture is hydrodynamic. Instead of quickly diffusing into the spin-
down region, it is then more likely that the spin-up atom is scattered
back into the spin-up region, where it can propagate ballistically.

After long evolution times, the oscillations shown in Fig. 1 have been
damped out, and the displacement between the centres of mass is
much smaller than the widths of the clouds. The relaxation dynamics
can then be described by linear response theory, giving access to the
spin transport coefficients. The spin drag coefficient Csd is defined as
the rate of momentum transfer between opposite-spin atoms12,14, and
is therefore related to the collision rate. From the Boltzmann transport
equation, the relaxation of the displacement d near equilibrium follows
the differential equation22

C sd
_dzv2

z d~0

in the case of strongly overdamped motion realized here. Fitting an
exponential with decay time t to the displacement gives the spin drag
coefficient of the trapped system as C sd~v2

zt. In the deeply degenerate
regime, the relationship between the measured and the microscopic
spin drag coefficient might be affected by a weak enhancement of the
effective mass23 and the attractive interaction energy between the
clouds10,22,24.

The spin drag coefficient is found to be greatest on resonance, and thus
spin conduction is slowest on resonance (see Supplementary Informa-
tion). On resonance, Csd in a homogeneous system must be given by a
function of the reduced temperature T/TF times the Fermi rate EF/B. At
high temperatures, we expect the spin drag coefficient to obey a universal
scaling C sd!nsv! EF

B T=TFð Þ{1=2. In Fig. 2 we show the spin drag
coefficient as a function of T/TF; Csd is normalized by EF/B, where EF
and TF are the local values at the centre of total mass. We observe T21/2

scaling for T/TF . 2, finding C sd~0:16 1ð Þ EF
B T=TFð Þ{1=2. At lower

temperatures, we observe a crossover from classical to non-classical
behaviour as the spin drag coefficient reaches a maximum of approxi-
mately 0.1EF/B near the Fermi temperature. We interpret this saturation
of the spin drag coefficient as a consequence of Fermi statistics and
unitarity4,5, as s and v approach values determined by the Fermi wave-
vector kF. The spin drag coefficient is inversely proportional to the spin
conductivity, which describes the spin current response to an external
spin-dependent force. Near the Fermi temperature, the maximum spin
drag coefficient corresponds to a minimum spin conductivity of the
order of kF/B. This is the slowest spin conduction possible in three
dimensions in the absence of localization.

At low temperatures, the spin drag coefficient decreases with
decreasing temperature. Reduced spin drag at low temperatures is
expected in Fermi liquids owing to Pauli blocking11,18,22,24,25, and is also
expected in one-dimensional Fermi gases26. In the case of collective
density (rather than spin) excitations, it was shown that pairing cor-
relations enhance the effective collision rate dramatically as the tem-
perature is lowered6. The effect of pairing on the spin drag coefficient
may be qualitatively different. In a simple picture, spin currents require
the flow of unpaired atoms, whereas collective density excitations
affect paired and unpaired atoms alike.

Comparing the relaxation rate to the gradient in spin density allows
us to also measure the spin diffusivity Ds. At the centre of the trap, the
spin current density Js is given by the spin diffusion equation27
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Figure 1 | Observation of spin current reversal in a resonant collision
between two oppositely spin-polarized clouds of fermions. a, b, Total
column density (a) and the difference in column densities (b: red, spin up; blue,
spin down) during the first 20 ms after the collision. The central column
densities here are typically 7 3 109 cm22. Strong repulsion is observed that
leads to a high-density interface. c, The centre of mass separation initially
oscillates at 1.63(2) times the axial trap frequency of 22.8 Hz (see
Supplementary Information) before decaying exponentially at later times. The
initial atom number per spin state is 1.2 3 106, and the temperature 200 ms
after the collision and later is 0.5TF, with TF the Fermi temperature at the centre
of each cloud. d, The trapping potential V is harmonic along the symmetry axis.
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Figure 2 | Spin drag coefficient of a trapped Fermi gas with resonant
interactions. The spin drag coefficient Csd is normalized by the Fermi rate EF/B
at the trap centre, whereas the temperature is normalized by TF 5 EF/kB. We
find agreement between measurements taken at three different axial trapping
frequencies, 22.8 Hz (red circles), 37.5 Hz (blue triangles) and 11.2 Hz (black
squares). The data for T/TF . 2 fit to a T 21/2 law (solid line). Dashed line, a
power law fit for T/TF , 0.5 to show the trend. Each point is a mean from
typically three determinations of Csd, each obtained from a time series of about
30 experimental runs and weighted according to the standard deviation from
fitting error and shot to shot fluctuations. Error bars, 61s.e.
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Is there a quantum limit for diffusion?

• kinetic theory: diffusion coefficient

                       quantum limit of diffusion

• spin conductivity from current correlations:

with spin current operator

Js~{Ds
L n:{n;
! "

Lz

where n"(#) is the density of spin-up (spin-down) atoms. We calculate
Js using the trap-averaged velocity as Js~

1
2 n:zn;
! "

_d, where the
densities are evaluated at the centre of total mass.

We find that the spin diffusivity is at a minimum when interactions
are resonant (see Supplementary Information). The increase in spin
diffusivity for positive scattering length a, as well as the decrease in spin
drag, argues against the existence of a ferromagnetic state in repulsive
Fermi gases, for which diffusion should stop entirely9,11. Figure 3
reports the measured spin diffusivity as a function of temperature at
unitarity. In the high-temperature limit on resonance, one expects
Ds / v/ns / T 3/2. At high temperatures, we indeed find this temper-
ature dependence, with a fit giving Ds~5:8 2ð Þ Bm T=TFð Þ3=2 for
T/TF . 2. In the degenerate regime, the spin diffusivity is seen to attain
a limiting value of 6.3(3)B/m.

When comparing these results to theoretical calculations, it is
important to account for the inhomogeneous density distributions
and velocity profiles. For a homogeneous system on resonance, and
at high temperatures compared to the Fermi temperature, we predict
Ds~1:11 B

m T=TFð Þ3=2 and C sd~0:90 EF
B T=TFð Þ{1=2 (see Supplemen-

tary Information). The measured spin drag coefficient is smaller by a
factor of 0.90/0.16(1) 5 5.6(4) while the spin diffusivity is larger by
about the same factor, 5.8(2)/1.11 5 5.3(2), compared to a homogen-
eous system at the density of the centre of total mass. These factors
reflect the inhomogeneity of the system and agree with an estimate
from the Boltzmann transport equation (see Supplementary Informa-
tion). The emergence of a superfluid core at our lowest tempera-
tures will further modify the ratio of trap-averaged to local transport
coefficients.

Finally, the measured transport coefficients give for the first time
access to the temperature dependence of the spin susceptibility, xs(T),

in strongly interacting Fermi gases. Defined as xs~
L n:{n;
! "

L m:{m;
! " , the

spin susceptibility describes the spin response to an infinitesimal effec-
tive magnetic field or chemical potential difference m"2 m# applied to
the gas, and is a crucial quantity that can discriminate between differ-
ent states of matter10. In a magnetic field gradient, particles with
opposite spin are forced apart at a rate determined by the spin con-
ductivity ss, while diffusion acts to recombine them. The balance
between the processes of diffusion and conduction therefore deter-
mines the resulting magnetization gradient, a connection expressed

in the Einstein relation11 xs 5 ss/Ds. Assuming the standard rela-
tion11,14 ss 5 n/(mCsd),

xs~
1

mdv2
z

L n:{n;
! "

Lz

where
L n:{n;ð Þ

Lz is evaluated near the trap centre. The inhomogeneous
trapping potential does not affect the measurement of xs in the hydro-
dynamic limit at high temperatures (see Supplementary Information).
Close to the transition to superfluidity, interaction effects may modify
the relation between ss and Csd.

Figure 4 reports our findings for the spin susceptibility at unitarity, as
a function of the dimensionless temperature T/TF. At high tempera-
tures, we observe the Curie law xs 5 n/(kBT), where kB is Boltzmann’s
constant. In this classical regime of uncorrelated spins, the susceptibility
equals the (normalized) compressibility of the gas n2k 5 hn/hm that
we also directly obtain from our profiles. At degenerate tempera-
tures, the measured spin susceptibility becomes smaller than the nor-
malized compressibility. This is expected for a Fermi liquid, where

xs~
3n

2EF

1
1zFa

0
and k~

3
2nEF

1
1zFs

0
with Landau parameters Fs

0 and

Fa
0 describing the density (s) and spin (a) response10. The spin suscepti-

bility is expected to strongly decrease at sufficiently low temperatures in
the superfluid phase, as pairs will form that will not break in the pres-
ence of an infinitesimal magnetic field. It is currently debated whether
the strongly interacting Fermi gas above the superfluid transition tem-
perature is a Fermi liquid23 or a state with an excitation gap (pseudo-
gap)28,29. The opening of a gap in the excitation spectrum would be
revealed as a downturn of the spin susceptibility below a certain tem-
perature. Such a downturn is not observed in xs down to T/TF < 0.2,
and therefore our spin susceptibility data agree down to this point with
the expected behaviour for a Fermi liquid.

In conclusion, we have studied spin transport in strongly interacting
Fermi gases. The spin diffusivity was found to attain a limiting value of
about 6.3B/m, establishing the quantum limit of diffusion for strongly
interacting Fermi gases. Away from resonance, the diffusivity increases.
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Figure 3 | Spin diffusivity of a trapped Fermi gas. Shown is the spin
diffusivity on resonance (Ds, normalized by B/m; filled circles) as a function of
the dimensionless temperature T/TF. At high temperatures, Ds obeys the
universal T 3/2 behaviour (solid line). At low temperatures, Ds approaches a
constant value of 6.3(3)B/m for temperatures below about 0.5TF, establishing
the quantum limit of spin diffusion for strongly interacting Fermi gases. Error
bars, 61s.e.

a

b

3.0

2.5

2.0

1.5

1.0

0.5

N
or

m
al

iz
ed

 F
s,

 N

10.3

0.3

3

3

10
T/TF

T/TF

1.2

0.8

0.4

F s
/n

2 N

1 10

Figure 4 | Spin susceptibility on resonance. a, Spin susceptibility (xs, open
red circles) and isothermal compressibility (k, filled blue circles), normalized by
the values for an ideal Fermi gas at zero temperature. For temperatures below
TF, xs becomes suppressed relative to k, owing to interactions between
opposite-spin atoms. Dashed line, xs of a non-interacting Fermi gas for
comparison. b, Red circles, xs divided by the value of n2k obtained from the
same clouds. At temperatures above TF, the ratio of xs to n2k approaches unity
(dashed line). Error bars, 61s.e.
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cf. spin Coulomb drag 
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1

!
Re

Z 1

0

dt ei!t
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jz
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Dynamical spin conductivity

• satisfies spin sum rule despite tail in d<4  Enss, EPJ Spec.Topics 2013

induced. Hence, the Aslamazov-Larkin correction to the
spin current vanishes exactly in the spin balanced case,
JAL!!0s ¼ 0, which constitutes an important simplification.

We solve the self-consistent equation for the fully dressed
current vertex J!!0 by iteration and obtain the current corre-
lation function (1) via the Kubo formula [9]. Since the
correlation function "jn=jsðq ¼ 0; i!mÞ is evaluated at
discrete imaginary Matsubara frequencies i!m, we must
perform an analytic continuation in order to obtain the
physically relevant correlation function "jn=jsð!Þ for real
frequencies !. We use Padé approximants and find that the
continuation is robust at low temperatures if we vary the
number of Matsubara frequencies, and it yields the correct
high-frequency tail (see below). Specifically, we oversample
theMatsubara data twicewith a spline fit and use the first five
Matsubara frequencies in order to extract the spin drag rate
!sd. We validate our strong coupling calculation by confirm-
ing that !sð!Þ indeed fulfills the spin f-sum rule (3) within
1%. Since we have constructed the formalism to satisfy the
sum rules exactly, this quantifies the numerical accuracy of
our self-consistent solution and the analytical continuation.

Spin conductivity.—The resulting spin conductivity
!sð!Þ is shown in Fig. 2 for reduced temperature T=TF ¼
0:5 where it has the lowest dc value !s ¼ 0:8n=m (red
circles). In a Drude model the conductivity would assume a
form !Drude

s ð!Þ ¼ ðn=mÞ!sd=ð!2 þ !2
sdÞ (solid black line)

with total spectral weight given by the sum rule. The spin
drag rate !sd is a parameter which we determine from the
dc limit !s ¼ n=m!sd of our full numerical solution. We
find that the true !sð!Þ deviates from the Drude model for
! * EF: spectral weight is transferred from the region
! & 8EF to higher frequencies where it forms a power-
law tail !sð! ! 1Þ %!&3=2 (dotted blue line in Fig. 2).

The high-frequency response generally depends on the
nonuniversal short-distance behavior of the interatomic
potential. However, for a broad Feshbach resonance as in

6Li [2] this potential has a range much shorter than the
particle spacing, kFjrej ' 1, and becomes effectively a
contact interaction. In this case the correlation functions
exhibit universal power-law tails in the high-frequency range
maxðEF; kBTÞ=@ ' ! ' @=ðmr2eÞ [27] which depend only
on the Tan contact density C [28]. In the high-frequency
limit the exact transport equations can be solved analytically
in a manner analogous to the viscosity response [9], and we
obtain the universal spin conductivity tail

!sð! ! 1Þ ¼ @1=2C
3#ðm!Þ3=2

(4)

in agreement with the result from the operator product
expansion [29]. Similar tails appear in other transport prop-
erties such as the viscosity [9,23,29,30]. The value for the
Tan contact density C ¼ 0:0863k4F at T=TF ¼ 0:5 extracted
from the tail of !sð!Þ agrees better than 1% with the value
C ¼ 0:0860k4F from the tail of the momentum distribution
nk % Ck&4 [9]. A similar behavior of !sð!Þ is observed for
all temperatures T ( Tc.
We now turn to the dc limit and plot the spin drag rate

!sd ¼ n=m!s in Fig. 3 (solid red line). The spin drag has a
maximum value of !sd ) 1:2EF=@ in the quantum degen-
erate regime around T=TF ¼ 0:5 and decreases both for
lower and higher temperatures. In the high-temperature
limit of a classical gas the Luttinger-Ward transport equa-
tions can be solved analytically to leading order in
the fugacity [9], and we obtain !sd ¼ ð32

ffiffiffi
2

p
=9#3=2Þ*

ðT=TFÞ&1=2EF=@ ¼ 0:9ðT=TFÞ&1=2EF=@ for T + TF in
agreement with Boltzmann kinetic theory [4,15]. The fact
that the numerical solution at large temperatures agrees
with the analytical result for T + TF is a nontrivial vali-
dation of our analytical continuation procedure.
The measured spin drag rate in a trapped unitary Fermi

gas [4] (blue squares in Fig. 3) has the same qualitative
behavior as our numerical data, with a broad maximum
between T=TF ¼ 0:4; . . . ; 0:8. Note that the absolute spin
drag rate cannot be directly compared to our calculation for
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FIG. 2 (color online). Spin conductivity !sð!Þ (in units of@n=mEF) vs frequency (red circles) at T ¼ 0:5TF. The Drude
model (solid black line) has the same total spectral weight as
!sð!Þ given by the spin f-sum rule. Part of the spectral weight is
transferred from lower frequencies into a universal high-
frequency tail (dotted blue line) !sð! ! 1Þ ¼ C=3#ðm!Þ3=2
with Tan contact density C ¼ 0:086k4F [9].
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FIG. 3 (color online). Spin drag rate !sd (in units of EF=@) vs
reduced temperature T=TF (solid red line). The experimental
data [4] (blue squares) for a trapped gas are rescaled up by a
factor of 5.3 to compensate for the effect of the trapping
potential. The dashed black line is the result from kinetic theory,
!sd ¼ 0:9ðT=TFÞ&1=2EF=@.

PRL 109, 195303 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

9 NOVEMBER 2012

195303-3

Z
d!

⇡
�s(!) =

n

m

• exact high-frequency tail
Hofmann PRA 2011;
Enss & Haussmann PRL 2012

�s(! ! 1) =
C

3⇡(m!)3/2
⇠ 1

!3/2

16



Spin diffusivity

• obtain diffusivity from Einstein relation,

                                                                               minimum

• Quantum Monte Carlo simulation for finite lattice:                        
Wlazlowski et al. PRL 2013

(dashed black line). In the strongly interacting region
near Tc, however, the fermions cease to be well-defined
quasiparticles [17,18] and the Boltzmann theory is not
applicable. Therefore, we employ the strong coupling
Luttinger-Ward theory to compute spin transport. The
Luttinger-Ward (or 2PI) formalism [19,20] is based on
the self-consistent T matrix for repeated particle-particle
scattering and becomes exact at high temperatures. In the
most interesting regime near Tc and unitarity there is no
small parameter to estimate its accuracy. Instead, a com-
parison with experiment shows that it accurately describes
both the normal and the superfluid phase of the BEC-BCS
crossover problem [21]: the values for Tc=TF ¼ 0:16ð1Þ
and the Bertsch parameter ! ¼ 0:36ð1Þ agree within error
bounds with precision experimental [13] and diagrammatic
Monte Carlo [22] results. We have devised a framework
which includes all diagrams needed to exactly fulfill the
conservation laws including scale invariance [9] and the
Tan relations [11].

The Luttinger-Ward theory has recently been extended to
compute transport coefficients in linear response using the
Kubo formula: this gives access to the frequency-dependent
shear viscosity of the unitary Fermi gas, which was found
to satisfy the exact viscosity sum rule [9,23].We now extend
this work to the case of spin transport in order to explain the
recent experiment by Sommer et al. [4], and we proceed as
follows: first we compute the frequency-dependent spin
conductivity "sð!Þ of the unitary Fermi gas. The dc value
"s ¼ "sð! ¼ 0Þ determines the spin drag rate !sd ¼
n=m"s at density n, which is the rate of momentum transfer
between atoms of opposite spin. We then compute the spin
susceptibility #s ¼ @ðn" $ n#Þ=@ð$" $$#Þ which charac-
terizes the magnetic properties of the system [14,24].
Finally, we determine the spin diffusivity shown in Fig. 1
by the Einstein relation Ds ¼ "s=#s.

The strongly interacting two-component Fermi gas is
described by the grand canonical Hamiltonian

H ¼
X

k;"

ð"k $$"Þcyk"ck" þ g0
V

X

k;k0;q

cyk"c
y
k0#ck0$q#ckþq"

where "k ¼ k2=2m (@ & 1) is the free particle dispersion
and$" the chemical potential for the" ¼" , # components.
The s-wave contact interaction g0 acts only between differ-
ent fermion species at low temperatures. The bare interac-
tion is singular in the ultraviolet [2] and needs to be
regularized; the renormalized coupling g ¼ 4%@2a=m
determines the s-wave scattering length a.
The transport coefficients are obtained from the micro-

scopic model via the retarded number-current or spin-
current correlation function

#jn=jsðq; !Þ ¼ i@ Z 1

0
dt

Z
d3xeið!t$q'xÞ

( h½ðjz" * jz# Þðx; tÞ; ðjz" * jz# Þð0; 0Þ+i: (1)

The spin selective current operators in Fourier representa-
tion are given by j"ðqÞ ¼ V$1P

kð@k=mÞcyk$q=2;"ckþq=2;".

The correlation function determines the conductivity

"n=sð!Þ ¼ lim
q!0

Im#jn=jsðq; !Þ
!

(2)

which measures the relaxation of a global number or spin
current at frequency !. The total response integrated over
all frequencies is proportional to the particle density by the
number or spin f-sum rule [25,26]

Z 1

$1

d!

%
"n=sð!Þ ¼ n

m
: (3)

For a momentum-conserving interaction the particle cur-
rent cannot decay and "nð!Þ ¼ %n&ð!Þ=m. In contrast,
scattering transfers momentum between " and # particles so
that the spin current relaxes and "sð!Þ has a nontrivial
structure.
We compute the current correlation function (1) using

field theoretical methods and Feynman diagrams in the
Matsubara formalism [25]. The current operator jz ¼ jz" *
jz# implies a current response vertex J""0 ¼ J0""0 þ JMT

""0 þ
JAL""0 in the Feynman diagrams which splits into three con-
tributions [9,20] (","0 are the spin indices of incoming and
outgoing fermion lines). The first term is the bare number
(spin) current vertex J0""0nðpÞ ¼ pz'

0
""0 [J0""0sðpÞ ¼

pz'
3
""0] with the ‘ ¼ 1 partial wave component of the

momentum p and Pauli matrices 'j. The other two terms
are current vertex corrections which are required to fulfill
the conservation laws. The Maki-Thompson (MT) contri-
bution describes direct scattering between quasiparticles
while the Aslamazov-Larkin (AL) term captures the in-
duced current of fermion pairs, or molecules (for details
see Ref. [9]). For a mass current both " and # fermions move
in the same direction and induce a current of pairs, leading
to a sizeable AL term. In contrast, for a spin current " and #
atoms move in opposite directions [4] and no pair current is
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FIG. 1 (color online). Spin diffusivity Ds vs reduced tempera-
ture T=TF (solid red line) in the normal phase, T > Tc ’ 0:16TF.
The experimental data [4] (blue squares) for the trapped gas are
rescaled down by a factor of 4.7 to compensate for the effect of
the trapping potential. The dashed black line is the result from
kinetic theory, Ds ¼ 1:1ðT=TFÞ3=2@=m.
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Thermal expansion and transport Frank/Zw. ’14

expansion αp = κT
(
∂p
∂T

)
V
→ γ κT cv Grüneisen parameter γ

scale invariance implies p = 2ε/3 → γ(T ) = 2/3 is universal

therm. conductivity jQ = −κ∇rT at jp ≡ 0

Boltzmann equ. in a 1/N-expansion κ = 1.89 . . . N2 T/λT ∼ T3/2

Prandtl-number Pr = η cP/κ = 1 if a gravity dual exists (Son 08’)

leading order in 1/N gives Pr = 0.630136 . . .+O(1/N)

is there a gravity dual of the unitary Fermi gas ?
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The unitary gas is a benchmark for many-body physics. It

• realizes a high-temperature fermionic superfluid below

Tc/TF ' 0.16 and a scale-invariant many-body problem

with universal ratios p/pF = ξs ' 0.37 or S/N |c ' 0.7 kB

• exhibits universal fermionic spectral functions A(k/kF , ε/εF )

in k-resolved RF and no pronounced pseudogap above Tc

• is the most perfect non-relativistic fluid with η/s close to

the KSS bound and quantum-limited spin-diffusion Ds ' 1.3 ~/m
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open problems

• unconventional pairing in imbalanced gases, FFLO, ....

• Fermi and Bose polarons, quantum impurity problems

resonance, we perform rf spectroscopy on the impurity
species j3i and on the environment particles in j1i by
transferring atoms into the empty state j2i, accessible to
either hyperfine state. This state is sufficiently weakly
interacting with the initial states to allow a direct interpre-
tation of the resulting spectra [18]. As in previous work,
spectra are spatially resolved and tomographically 3D
reconstructed [19] via an inverse Abel transform, and are
thus local and free from broadening due to density inho-
mogeneities. In addition, phase contrast images yield the
in situ density distribution n", n# and thus the local Fermi
energy !F of the environment atoms and the local impurity
concentration x ¼ n#

n"
. The Rabi frequencies !R for the

impurity and environment rf transitions are measured (on
fully polarized samples) to be identical to within 5%.

Figure 2 shows the observed spectra of the spin-down
impurities and that of the spin-up environment at low local
impurity concentration. The bulk of the environment spec-
trum is found at zero offset, corresponding to the free
(Zeeman plus hyperfine) energy splitting between states
j1i and j2i. However, interactions between impurity and
spin-up particles lead to a spectral contribution that is
shifted: The rf photon must supply additional energy to
transfer a particle out of its attractive environment into the
final, noninteracting state [17]. In Fig. 2(a), impurity and
environment spectra above zero offset exactly overlap,
signaling two-body molecular pairing. The steep threshold
gives the binding energy, the high-frequency wings arise
from molecule dissociation into remnants with nonzero
momentum [17,20,21]. As the attractive interaction is re-
duced, however, a narrow peak appears in the impurity
spectrum that is not matched by the response of the envi-
ronment [Figs. 2(b)–2(d)]. This narrow peak, emerging
from a broad incoherent background, signals the formation
of the Fermi polaron, a long-lived quasiparticle. The nar-
row width and long lifetime are expected: At zero tem-
perature the zero momentum polaron has no phase space
for decay and is stable. At finite kinetic energy or finite
temperature T it may decay into particle-hole excitations
[13], but phase space restrictions due to the spin-up Fermi
sea and conservation laws imply a decay rate / ðT=TFÞ2 $

1% in units of the Fermi energy. Indeed, the width of the
polaron peak is consistent with a delta function within the
experimental resolution, as calibrated by the spectra of
fully polarized clouds. The background is perfectly
matched by the rf spectrum of the environment. This is
expected at high rf energies @! % !F that are probing high
momenta k % kF and thus distances short compared to the
interparticle spacing. Here, an impurity particle will inter-
act with only one environment particle, leading to over-
lapping spectra.
Chevy has provided an instructive variational wave

function [5,9] that captures the essential properties of the
polaron, even on a quantitative level [16] when compared
with Monte Carlo (MC) calculations [6,12,13]:

j"i¼’0j0i#jFSi"þ
X

jqj<kF<jkj
’kqc

y
k"cq"jq'ki#jFSi" (1)

The first part describes a single impurity with a well-
defined wave vector (k# ¼ 0) that is not localized and free
to propagate in the Fermi sea of up spins jFSi". In the
second part the impurity particle recoils off environment
particles that are scattered out of the Fermi sea and leave
holes behind. This describes the dressing of the impurity
with particle-hole excitations. The probability of free
propagation is given by the first, unperturbed part, Z ¼
j’0j2. According to Fermi’s golden rule [11,15,17,22], the
two portions of j"i give rise to two distinct features of the
impurity rf spectrum #ð!Þ (! is the rf offset from the bare
atomic transition):

#ð!Þ ¼ 2"@!2
RZ#ð@!þ E#Þ þ #incð!Þ: (2)

The first part in j"i contributes a coherent narrow quasi-
particle peak to the minority spectrum. Its position is a
direct measure of the polaron energy E#, its integral gives
the quasiparticle residue Z. The particle-hole excitations in
the second part give rise to a broad, incoherent background
#incð!Þ / P

q;kj’qkj2#ð@!' !q'k ' !k þ !q þ E#Þ: The
polaron energy E# is released as the impurity at momentum
q' k is transferred into the final state, leaving behind an
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FIG. 2 (color online). rf spectroscopy on polarons. Shown are spatially resolved, 3D reconstructed rf spectra of the environment
(blue, state j1i) and impurity (red, state j3i) component in a highly imbalanced spin-mixture. (a) Molecular limit; (b),(c) Emergence of
the polaron, a distinct peak exclusively in the minority component. (d) At unitarity, the polaron peak is the dominant feature in the
impurity spectrum, which becomes even more pronounced for 1=kFa < 0 (not shown). For the spectra shown as dashed lines in (d) the
roles of states j1i and j3i are exchanged. The local impurity concentration was x ¼ 5ð2Þ% for all spectra, the interaction strengths
1=kFa were (a) 0.76(2), (b) 0.43(1), (c) 0.20(1), and (d) 0 (unitarity).
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• transport in the quantum critical regime, solitons, ...
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