Establishing metrological traceabilit for chemistry from mono-elemental calibration solutions to metalo-proteins

Foto: Okerlandarchiv

- 1. Traceability and measurement uncertainty for inorganic chemistry
- 2. Comparable measurements for water analysis in Europe
- 3. Species analysis for clinical markers

PB

A reliable measurement result is traceable and has a measurement uncertainty

sample preparation

measurements

Reference: ISO Guide: "Guide to the Expression of Uncertainty in Measurement"

property of a measurement result whereby the result can be related to a reference through a documented unbroken chain of calibrations, each contributing to the measurement uncertainty

International vocabulary of metrology (VIM), 2.41

$$Y = y \pm U(y)$$

International System of Units (SI)

Comparison measurements with consensus value

snapshot at a point in time
only applicable to participants
accuracy unknown

Matschat, R. et. al., ACQUAL 10 (2006), S. 633-639

BAM-A-primary-Cu-1

LOT B27F17					
	matrix	impurity	sum 'above	um/2 'belov	N'
	in %	in mg/kg	in mg/kg	in mg/kg	
mass fraction	99,9968	32,33	22,38	9,95	
abs. uncertainty	0,0005	5,27	3,84	3,61	

not under relevant nvestigation (estimate)

	_															-	
Н																	He
< 2,1																	< 0,001
Li	Be											В	С	N	0	F	Ne
< 0,31	< 1,1											< 3,2	0,04	0,2	1	< 2	< 0,001
Na	Mg											AI	Si	Р	S	CI	Ar
0,002	< 0,05											< 0,07	< 0,002	< 2	5,4	< 0,6	< 0,001
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
< 0,002	0,1	< 0,06	< 0,32	< 0,04	0,07	0,01	< 5	< 0,11	1,64	matrix	0,057	< 0,11	< 0,12	0,5	0,22	< 0,014	< 0,001
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
< 0,05	< 0,014	< 0,03	< 0,015	< 0,02	< 0,06	< 0,001	< 0,03	< 1,6	< 0,014	11,3	< 0,015	< 0,05	0,14	1	< 0,22	< 0,09	< 0,001
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
< 0,0057	< 0,017	< 0,002	< 0,003	< 0,003	< 0,12	< 0,009	< 0,004	< 0,007	< 0,007	< 0,008	< 0,03	< 0,005	0,47	0,23	< 0,001	< 0,001	< 0,001
Fr	Ra	Ac															
< 0,001	< 0,001	< 0,001															
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	

 Ce
 Pri
 Nd
 Prin
 Sm
 Eu
 Gd
 ID
 Dy
 HO
 Er
 Im
 YD
 Lu

 < 0,0057</td>
 < 0,002</td>
 < 0,21</td>
 < 0,001</td>
 < 0,003</td>
 < 0,001</td>
 < 0,001</td>

GD-MS – direct solid state analysis (purity assess)

BAM/PTB/Merck-project – traceability system for element standard solutions

PB dissemination of elemental solution standards

Increasingly demanded as a quality criterion for measurement results in chemistry

EU Water Framework Directive 2000/60/EC (WFD) Groundwater Directive 2006/118/EC Drinking Water Directive 98/83/EC Marine Strategy Framework Directive 2008/56/EC In vitro Diagnostica 98/79/EG ISO/IEC 17025 ISO/IEC 17043

Toxic elements in surface waters

EU Water Framework Directive 2000/60/EC (WFD) Groundwater Directive 2006/118/EC Drinking Water Directive 98/83/EC ISO/IEC 17025 ISO/IEC 17043

clean water is an indispensable prerequisite for life

- less than 1 % of all waters on Earth are suitable and available for human consumption.
- more than 1 200 million people have no access to clean drinking water
- more than 4500 children die worldwide every day because of diseases caused by water pollution

(EU, German Government)

Status GDR 1990

- main rivers and many surface waters are heavily contaminated
- only 42% of the population has access to an adequate sewage system
- only 20% of water courses can be used for drinking water.

- life expectancy in certain areas is as much as ten years below the state average

(EU press release P/90/67 Date: 27/09/1990)

Water in the European Union

The water framework directive a common legislation for at least 27 states and more than 500 million people

implementation of the directive under drastically different and changing conditions in different countries

EU Water Framework Directive 2000/60/EC (WFD)

Motivation

- 20 % of all surface waters in the European Union are heavily polluted.
- 65 % of the drinking water originate from ground water resources.
- 60 % of the European cities overuse their ground water resources.
- 50 % of the EU wetlands (and their biota) are endangered because of overused ground water
- The artificially watered areas in the EU increased by 20 % since 1985.

(e.g., European Environmental Agency, report 1995)

Aims

- to establish a legal framework to protect and restore clean water across Europe and to ensure its long-term and sustainable use
- to expand the scope of water protection to all waters: surface waters, transitional waters, coastal waters and groundwater

to achieve a "good status" for all waters

to achieve a water management based on river basins

 to implement a "combined approach" of emission limit values and quality standards

Good chemical status

- ... groundwater should broadly be that it should <u>not be</u> <u>polluted at all</u> (European Quality standards - EQS - level)
- compliance with all the quality standards for chemical substances at European level.
- <u>prioritisation</u> mechanism for hazardous chemicals: ensuring a minimum chemical quality, in relation to very toxic substances, everywhere in the Community

selection criteria

- aquatic ecotoxicity and human toxicity via aquatic exposure routes
- Intrinsic hazard (toxic, persistent and liable to bioaccumulate)
- evidence from monitoring of widespread environmental contamination
- other proven factors indicating possible widespread environmental contamination (e.g., industrial production rates)

Decision 2455/2001/EC of the European Parliament and the Council

Selected **33 priority substances** or groups of substances: *(WFD) 2000/60/EC & QA/QC Directive (2009/90/EC)*

- 4 heavy metals
- 14 pesticides
- 15 organic compounds of industrial origin (e.g. flame retardants)

review every four years

Requirements of the QA/QC directive (2009/90/EC)

to assure comparable measurement results

- (... pursuant to Directive 2000/60/EC)
- Methods have to be validated and documented in accordance to EN ISO /IEC17025
- Minimum performance criteria for the analytical method:

Limits of quantification	≤ 0.3 * EQS
Uncertainty	≤ 0.5 * EQS

- Monitoring laboratories have to participate in PT shemes
- organized by accredited or internationally recognized organisations
- evaluated according to ISO Guide 43-1 or ISO 13528 or equ.

EUROMET Project 924

A sustainable traceability system providing Europe-wide comparable measurement results in water monitoring under the WFD

organized by BAM, LNE, IRMM, PTB

Task:

Comparison measurements for selected priority substances: heavy metals (Ni, Pb, Cd, Hg)

Aims:

- provide reference points (National Standards, CMCs) of sufficient quality (suitable for EQS-requirements) to serve the WFD
- establish links to expert* and monitoring laboratories in Europe
 *pt-providers, potential calibration laboratories (PCL)
- assess comparability and measurement uncertainties in the field
- validate methods of expert laboratories
- feasibility of a metrological dissemination system in Europe

Dissemination Structure

- 2 samples:

purified water and natural ground water

- Samples prepared and dispatched by PTB, LNE in cooperation with IWW
- Filtered

purified water:

- Concentration ranges :	Hg	(30	- 70)	ng/l
	Cd	(50	- 150)	ng/l
EQS-levels!	Ni	(10	- 30)	µg/l
	Pb	(4	- 20)	µg/l

- Gravimetric reference values available
- Hg samples stabilized with BrCl according to EPA 1631
- Stability, homogeneity and Hg content of fresh (unspiked) water tested by PTB and IWW

EURAMET 924/Step 1: NMIs & Expert institutes

- NMIs:
 - PTB (Ger), BAM (Ger), LNE (Fr), IRMM (EU)
 - P100:
 - NIST (USA), LGC (UK). NRC (Can)
- PT-Providers (PCL):
 - 8 Germany
 - 4 France
 - 1 Sweden (NMI)
 - 1 Norway
 - 1 Finland
 - 1 Romania (NMI)
 - 1 Bulgaria (NMI)
 - 1 Austria
 - 2 Portugal
 - 1 Italy
 - 1 Hungary
 - 2 Israel
 - 1 Chile (NMI)

Target values for test laboratories

- Natural ground water (in mg/l, about Ca: 44, Na: 43, K: 4, Mg: 8, heavy metals: maximal some 10 ng/l)
- Samples prepared and dispatched by PTB/IWW

et uncertainty	U_{Target}	≤ 0.5 * EQS
of quantification	β_{LOQ}	≤ 0.3 * EQS

EC in	QS µg/l	β _{LOQ} in μg/l	U _{Target} in μg/l
Чg	0.050	0.017	0.025
Cd	0.090	0.030	0.045
⊃b	7.2	2.4	3.6
Ni	20.0	6.7	10.0

Participants of Euramet 924 Step 3

0	Germany	33	144
S	Israel	2	No and Andrews
	Hungary	12	
F	Bosnia- Herzegovina	1	
	Portugal	4	
	Slovenia	1	\nearrow
-	Czech	1	
	Croatia	4	
	Bulgaria	6	
Sampley Sampley Mana Cana Sama Cana	Austria	11	
N. FUR	Italia	9	
-	Romania	1	
-	Norway	1	AND.
96	Sweden	4	
2	France	18	
L.	Spain	5	
	Finland	1	
E	Σ Countries:17	Labs: 114	A
			H

Euramet 924 Step 3:

114 monitoring and expert labs from 17 countries

4 NMIs (BAM, LNE, PTB, NCM)

		mail		1 marin
	registere	ed	submitted results	
Ni: Pb: Cd: Hg:	114 113 113 93		113 (99%) 111 (98%) 95 (84%) 55 (59%)	
Sam Lab C EURAMET (Merc	ple l D22 - 3 rd stage sury)	Euroce Sample I - Lab 032 - EURAMET 3 rd stage (Mercury)	Sample I - Lab 042 - EURAMET 3 rd stage (Mercury)	EU
10 - Revel	1 1/ 10-		the second	1000

Ni: Performance of monitoring labs

Island of Sylt, North Sea, Germany © Vidicom /Christian Irrgang

But

EUROMET 924: Performance of Test Laboratories

Evaluation criteria

24.

Result	Scor	e	
Satisfactory		Z	≤2
Questionable	2 <	Z	< 3
Unsatisfactory		Z	≥ 3

Ni: Performance of monitoring labs

Hg : CCQM K70 & EUROMET 924 step3

Hg: Performance of monitoring labs

EUROMET 924: subm. results - monitoring labs

EUROMET 924: measurement uncertainties

Comparison of standard deviations

Е	<i>S</i> /	s / \overline{x}	
	0	/ ₀	1
	PCL	ML	\bigcirc
Cd	15	39	2.6
Ni	3.3	12.3	3.7
Pb	2.9	23.3	8.0
Hg	12	38	3.2
			\bigcirc
PCL: PT-provi	ders ML: m	onitoring labs	ratio

8.

- A three level system for traceability of chemical measurements under the EU water framework directive was established an tested for the relevant heavy metals
- The feasibility of a system ensuring traceable results is demonstrated at least for the heavy metals
- but data must be carefully evaluated and improvements are necessary especially when low concentration levels are required (e.g., Hg)

comparability in inorganic chemistry: clin. chem.

Metalloproteins in blood serum

In vitro Diagnostica 98/79/EG ISO/IEC 17025 ISO/IEC 17043

Freely based on Paracelsus:

Not only the dose but also the compound makes an element toxic!

...and makes the compound interesting for clinical investigation.

as drugs

- cyanocobalamin (vitamin B12)
- cis-platin (cancer therapy)
- sodium aurothiomalate (rheumatoid athritis treatment)
- lithium carbonate (depression treatment)
- iron sulfate (anemia treatment)
- gadolinium complexes (MRT diagnostic)

etc.

as biomarkers

- haemoglobin (anaemia, thalassemia, diabetes control)
- transferrin (acute phase protein, alcoholism, liver damage)
- superoxide dismutase (acute phase protein, amyotrophic lateral sclerosis)
- ceruloplasmin (Wilson' disease, Menke's disease)
- ferritin (anaemia, thalassemia, haematochromatosis)
- C-reactive protein (chronic inflammation, atherosclerosis, cardiovascular diseases)

PB why reference methods for metalloproteins?

¹Infusino I. et al., Anal Bioanal Chem (2010) 397:521-525

Example: Ceruloplasmin (CER)

- Cu storage protein
- marker for Wilson's disease a genetic defect in 1:30 000 to 1:300 000 persons
- \blacktriangleright if untreated \Rightarrow liver failure and neurological defects
- methods have to distinguish between functional and non-functional protein forms

- definition of analyte
- clinical samples have often complex matrices (blood, tissue, urine etc.)
- ensuring the stability of the analyte until analysis (e.g. proteolysis sensitive proteins such as Cp)
- ensuring complete separation from other compounds containing the same metal
- often no species specific spike material available
 \Rightarrow has to be produced and characterised in-house
- often no adequate reference material available
 ⇒ purchase of pure protein and characterisation in-house

RAMAN

isotope dilution approach

equal blend amounts no dead time, back ground, ... correction both blends share the same "fate"

metals easily exchangeable such as Cu in SOD or Cp or Fe in Tf

proteins with metals more strongly bound such as Fe in Hb

Thalassemia: Hb quantification via char. peptides

measurand of clinical importance: percentage of HbA₂ in blood

• IDMS for determination of HbA₂ and total Hb in reference materials

result 2 for "total Hb" by quantifying Hb-fragment 2 of α-globin

```
percentage of HbA2=[HbA2]*100/[total Hb]
```

advantages of quantification via metal

- less interferences \Rightarrow less sample preparation necessary
- use of isotope dilution approach possible
- sum parameters possible for structural variations (e.g. 750 known variants of Hb)
- different clinical questions can be answered by different separation/detection conditions

However: structural confirmation of compound in the peak necessary by other means

...for your interest !

...and to BAM, LNE, IRMM R. Matschat, H. Scharf, J. Birkhahn, G. Labarraque, P. Fisicaro, C. Quetel

IWW Mühlheim/Ruhr, Uni Stuttgart (*PT-providers water analysis*) U. Borchers, D. Schwesig, M. Koch

and my colleagues in PTB in particular: O. Rienitz, C. Swart, J. Not

cranes flying to Africa in autumn, North Sea © Vidicom / Christian Irrgang ...and Vidicom-Television for photos

S. Zakel, O.Rienitz, B.Güttler, R. Stosch, Analyst 2011, 136, 3956-3961

R. Stosch, A. Henrion, D. Schiel, B. Güttler, Anal. Chem. 2005, 77, 7386-7392

57

PBID-SERS Raman: Signal enhancement / Isotopic shift

Haemoglobin (Hb) variants in blood (adults)

Hb A0 $(\alpha_2\beta_2)$: 95-98% Hb A2 $(\alpha_2\delta_2)$: 2-3% \longrightarrow fraction of A2: Hb F $(\alpha_2\gamma_2)$: 0.8-2% $\begin{array}{c} 4-8\% & \beta \text{-thalassemia,} \\ 3.5-4\% & \text{boarderline cases} \end{array}$

globin:	measurand:
α–globin	total haemoglobin
β–globin	haemoglobin A0
δ–globin	haemoglobin A2

methods for haemoglobin A0/2 from Hb-fragments (β/δ -Globin)

cooperationpartner: P. Kaiser (INSTANT e.V., Düsseldorf), Prof. A. Mosca (Centre for Traceability in Laboratory Medicine, Univ. Mailand ,Italien)

