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around t = 500 
the noise 
increases

Repeated measurements reveal
always something
Repeated measurements reveal
always something

• stationarity
• aging
• slow drift
• abrupt change
• failure
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Changes may cause disturbance: the 
mass of the International Prototype Kilogram
Changes may cause disturbance: the 
mass of the International Prototype Kilogram

Masses of the entire worldwide ensemble of prototypes have 
been slowly diverging from each other. 
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LIGO Sees 
First 
Gravitational 
Waves

Or may reveal new physicsOr may reveal new physics

Or just give the complete pictureOr just give the complete picture
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•to estimate the behaviour of a 
physical quantity and its 
possible impact on complex 
systems 
•to predict the behaviour
•to control the behaviour

P. Tavella, “Statistical and mathematical tools for atomic clocks”, Metrologia
45, 6, (2008) S183-S192
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Repeating measurements

6

time t

y(t)

2y 3y

The uncertainty on the single measure
can be evaluated according to the 
GUM: Guide for Uncertainty in 
Measurement

1y

t1 t1 +  t1 + 3 

instability is more impacting than single measure uncertainty


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Instability is more impacting than single measure uncertainty

7

•If we want to produce and sell a reference measurement
standard or measuring device

•If we want to use the standard as primary reference for 
calibrating other devices

•If we want to carry out precise measure to test fundamental
physics

•If we use the standard or the measurement device in a 
complex system, as space, health, environment applications

Instability can be due to the measurement process, 
to the reference standard, to device under test, ot to the measurand
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Time series of measures may contain polynomial 
component to be treated by least square 
estimation techniques (batch, recursive…)

y(t)

t

linear drift

quadratic change
initial offset
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At each instant the measure y(t) is a random variable

y(
t)

but stochastic components are also present 
and sometime dominant
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Appropriate mathematical tools for 
describing the stochastic noises:

• Spectral analysis of noise

• Filtered variances such as the Allan variance

decomposition in 
elementary frequencies

f

dispersion of the average 
frequency values
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N

y
N

i
i




 1

2

2
)(

)(




The variance is the measure of dispersion

time t

y(t)

2y 3y

1y

t1 t1 +  t1 + 3 

First case of typical noisy behaviour (short term noise):

 ty

t

If the “noise” is stationary, the 
estimation of the variance
converges as N grows

For longer observation interval 
the variability diminishes
The “noise” is white and 


 1)(2 The variance depends on the 

observation interval 


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N

y
N

i
i




 1

2

2
)(

)(




The variance is the measure of dispersion

time t

y(t) 2y 3y

1y

t1 t1 + 


t1 + 3 


 ty

t

If the “noise” is not strictly
stationary, e.g. a random walk, 
the estimation of the variance
do not converge and depends
on N the number of samples
(for any )

Other typical noisy behaviour (long term noise)


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If the “noise” is not strictly stationary, e.g. a random walk, the estimation of the variance do not
converge and depends on N the number of samples (for any )

IDEA of Allan and Barnes (1966) let’s agree on the number of samples N=2

 22

2
1

tty yy)(  

time

y(t)

ty ty

stability of the mean values (on  intervals), actually variance of increments

 221

2

1

2

2

2
1

2

)(
),2( yy

y
N i

i











and let’s average many 2-sample 
variances

J. Levine, P. Tavella, G. Santarelli, “Introduction to the Special Issue on Celebrating the 
50th Anniversary of the Allan Variance”, IEEE Transactions on Ultrasonics, Ferroelectrics, 
and Frequency Control, Vol. 63, No. 4, Pag 511 – 512, April 2016
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With the Allan deviation we understand which type of 
noise is (mostly) affecting the measures, usually

applied to the frequency of the atomic clocks 

-1/2 = white freq noise

+1/2 = random walk
freq noise
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 = -2

 = -2

 = -1
 = 0

 = 1
flicker

frequency
white frequency

flicker
phase

white
noise

 = -2

 = -1
 = 0

 = 1

 = 2

Sy(f) = h(f) 

L
og

 S
y(f

)

log f log 

 < 2
y()> () 

lo
g 

< 


2 y( 
)>

white
noise

flicker
phase

white
frequency

random walk
frequency

random walk
frequency

flicker frequency

observation
interval 
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1- In some cases, the frequency instability is more 
impacting than single measure uncertainty

2. The instability variance depends on the observation
interval 

3. In some cases, the noise is non strictly stationary and the 
classical variance is not an appropriate tool. The Allan 
variance was proposed and important properties were found
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Frequency offset Allan Deviation

Most common noise are white, random walk, and 
integrated random walk

White 
noise

Random 
Walk

Time offset = Integral of  

Random 
Walk

Integrated
Random 
Walk

-1/2 = 
white
noise

+1/2 = 
random 
walk noise
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The mathematical model for 
deterministic and stochastic 
behaviour
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Frequency offset Time offset

      
t

t
dssttyxtx

 

 000
0

Strainght Line + 
Random Walk on Time 
Offset

A mathematical model for determinist and stochastic behaviour

White noise plus constant offset and its integrated effect

t

 ty

0y

 tx

t

   tyty  0

White Frequency Noise
+ constant initial offset

  ),0(: 2 Nt

Velocity Position               
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Mathematical context: notations

Random Walk Wiener Process 

(Brownian Motion)
 tW

“derivative” of a Wiener 
process

   tdWdtt 

White Noise  t
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Stochastic integralRiemann integral

Stochastic calculusStochastic calculus

   tdWdtytdx  0 

    
tt

t
tdWdtytx

 

 t

 

 0
00

 

      000   tWtWtty  

t

 tx

Straight line +Wiener
process

  00 tW

     

 ty
dt

tdxty

dssttyxtx
t

t







 

0

 000

)()(

0   tdWdtt 

It depends on the 
choice of it

    





n

i
ii tWtW

1
10

lim


1 ii tttit1it


Itô stochastic integration

White is the derivative of Wiener
or Random Walk

Stochastic integral
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Integrated (White noiseIntegrated (White noise

   tdWdtytdx   0  White noise
on the 
frequency

Wiener 
noise on the 
phase

Wiener on 
the 
frequency

Integrated
Wiener on the 
phase

   velocityofor offset frequency  ofcomponent  a2 tx

  position aseffect  integrated offset  time1 tx

Quadratic ageing

     
   







tdWdtatdx
tdWdttxtdx
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xxwith initial conditions

plus Random Walk noise)plus Random Walk noise)
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White Freq. noise

RW Freq. noise

In case of integrated white and random 
walk the exact solution exists:
In case of integrated white and random 
walk the exact solution exists:

     

   




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tWtaytx
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2202
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correlated processes

Iterative solution useful

for simulations, filter, …
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 
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01
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yX
xXwith initial conditions

L. Galleani, L. Sacerdote, P. Tavella, C. Zucca, “A mathematical model for the 
atomic clock error”, Metrologia Volume 40 (3), 2003, S257-S264
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Random Walk predictionRandom Walk prediction
000  ayx

t2
2 

10 20 30 40

-10

-5

5

t

 tX 2

The prediction error at
epoch t can be  
evaluated

Diffusion coefficient
linked to Allan Deviation

Example of a Cesium clock, 10 days after synchronisation

G. Panfilo, P. Tavella, "Atomic Clock Prediction based on stochastic differential equations", Metrologia 45, 6, (2008) 
S108-S116
P. Tavella, C. Zucca “The Clock Model and its Relationship with the Allan and related Variances”, IEEE Trans. 
UFFC Ultras. Ferroel. Freq. Control, vol. 52, no. 2, Feb. 2005, pp. 288-295
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Other stochastic process may be useful as
the Ornstein–Uhlenbeck process
Other stochastic process may be useful as
the Ornstein–Uhlenbeck process

k

k
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Other stochastic process may be useful as
the Ornstein–Uhlenbeck process
Other stochastic process may be useful as
the Ornstein–Uhlenbeck process

E. Bibbona, G. Panfilo, P. Tavella, "The Ornstein-Uhlenbeck Process as a 
Model of the Filtered White Noise",  Metrologia 45, 6, (2008) S117-S126
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1- Deterministic and stochastic behaviour can be modeled
by stochastic differential equations(SDE)

2. The exact (or approximat) solution of the SDE allows the 
dynamic behaviour estimation, simulation, and prediction

3. The noises imbedded in the model has usually zero mean
value, they do not impact on the prediction but on the 
uncertainty of the predicted values
(therefore allowing to evaluate confidence intervals)
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28

Will the well understood and modeled
behaviour last forever?
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29

Possible causes of
nonstationarities on space clocks
are manoeuvres and tests on
board, environmental variations,
eclipses, etc. In other cases, the
nonstationarities may be due to the
clock itself.

Example of GPS 
space clocks

Frequency jumps are observed
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WE NEED A FREQUENCY JUMP DETECTOR

Q. Wang, F.Droz, P. Rochat, “Robust Clock Ensemble for Time and Frequency Reference System”, presented at 
the EFTF/IFCS Denver 2015
L.Galleani,P.Tavella."Detection of Atomic Clock Frequency Jumps with the Kalman Filter,“ IEEE Transactions on 
Ultrasonics, Ferroelectr, Freq Control March 2012. vol. 59, no. 3, p. 504-509, March 2012
Huang X, Gong H, Ou G, Detection of weak frequency jumps for GNSS onboard clocks, IEEE Trans Ultrasonics, 
Ferroelectr Freq Control. 2014 May;61(5):747-55

y(t)
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From the past we best predict the future 
and then we compare prediction with 
measures (or mean of measures)

ys̂

e̂y

e̂

Nw1
Nw2

Nw3

y

μ
μe

Nw

y

Nw = full data set
Nw1 = estimation of deterministic behaviour
Nw2 = check on jump
Nw3 = moving average to smooth noise

= estimated value of deterministic trend 
= extrapolated deterministic trend

ys = frequency values smoothed by a moving
average on Nw3 samples (sliding in window Nw2)

= | ys - |

If > thresholdy
Alarm
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QUICKEST DETECTION METHOD (optimal stopping) 

FOR A WIENER PROCESS

Assume that the quantity evolution can be modeled by a Wiener process X and
observe a trajectory with a drift changing from 0 to at some random time .

Task: find a stopping time  of X that is as close as possible to the unknown
time .



0

Peskir, G. and Shiryaev, A. Optimal Stopping and Free-Boundary Problems Lectures in Mathematics. ETH Zürich 
Birkhäuser (2006); Shiryaev, A. Optimal Stopping Rules Springer (1978)
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We write 
a risk 
function

  ][)(inf)( 


cEPV

)(  P
probability of false alarm

average delay in detecting the anomaly

c a suitable constant 

 ][ E

We  want and also to be small    )(  P  ][ E
•To avoid false alarms

• To minimize the detection delay

Quickest detection method for a Wiener 
process

33

QUICKEST DETECTION METHOD (optimal stopping) 

FOR A WIENER PROCESS
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The minimization 
problem   ][)(inf)( 


cEPV

can be written  as an optimal stopping problem





  






0
1inf)( dtcEV t

where 

is the a posteriori probability process, probability that by
epoch t the process X has changed drift. 

The original process X has changed drift when the process 
 is crossing the boundary A.
The optimization problem has been transformed into a first 
passage time, becoming an analytical problem.

34
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=

=


0 5 10 15 20 25 30

0

5

10

15

t

X t

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

t

 t

A theorem demonstrates that the exact solution exists and 
studying the additional process  we can optimally 
estimate the epoch of the insurgence of the new drift 
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36

Tuning parameter values
We apply the optimal
stopping with different
values of 

=10^6 (one event every 28 days)


=3*10^7(one event a year)


=1500 (one event every 25 min)


0 0.5 1 1.5 2 2.5

x 106

-5

0

5

10

15
x 10-7

t seconds

X t

Detection with =3e+07

 

 

0 0.5 1 1.5 2 2.5

x 10
6

0

0.5

1

t seconds

 t

0 0.5 1 1.5 2 2.5

x 106

0

0.5

1

t seconds

 t

0 0.5 1 1.5 2 2.5

x 106

0

0.5

1

t seconds

 t
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Jan 19th, 2006 to meet Pluto on July 14, 2015 The 
measurement system required an ultra-stable oscillator 
(Quartz Crystal) with very high frequency stability

Example of optimal stoppingExample of optimal stopping

G.L.Weaver, J. R. Jensen, C. Zucca, P. Tavella, V. Formichella, G. Peskir, 
“Estimation of the dynamics of frequency drift in mature ultra-stable oscillators: 
a study based on the in-flight performance from New Horizons, in proc ION 
PTTI Precise Time and Time Interval meeting, Monterey CA, Jan 2016
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Quartz  frequency  was changing rate?

• The gaps in the data are those periods when the spacecraft was in hibernation and 
no tracking was performed. 

• During 2015, the frequency of the Quartz was measured almost continuously in 
preparation for the Pluto-Charon encounter.

• A reversal in the frequency rate asks for recovery actions
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39

Will the well understood and modeled
behaviour last forever?
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We need a 
dynamical characterization of the noise

Time and Frequency spectral analysis 
for example

Not only estimating which frequencies existed

But also estimating when they existed

40
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Time-frequency analysis
It describes how the frequencies of a signal change with time

Bowhead whale

L. Cohen, Time-frequency analysis, Prentice-Hall, 1995
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sliding the Allan variance estimator on the data 

100 200 300 400 500 600 700 800 900 1000

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t

x(
t)

t1

),( 1  ty

t2

),( 2  ty

... ),(  ty

A Dynamic Allan variance
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43

stability may vary with time
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estimator

L. Galleani, P. Tavella, “Dynamic Allan variance” , IEEE Trans UFFC, vol. 56, no. 3, March 2009, pp450-464
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Simulation results : Bump
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L. Galleani, P. Tavella, “Dynamic Allan variance” , IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, UFFC, vol. 56, no. 3, March 
2009, pp450-464
L. Galleani, P. Tavella, “The Dynamic Allan Variance V: Recent Advances in Dynamic Stability Analysis”, EEE Transactions on Ultrasonics, 
Ferroelectrics, and Frequency Control, Vol. 63, No. 4, Pag 624 - 635, April 2016

The Dynamic Allan variance
Discrete time formulation from the phase samples x[n]
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

where:
► Nw is the window length
► xN is the phase signal in the window Nw
► 0 is the sampling time

the DAVAR estimator
has no expectation value E because we have one realization only
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The change in instability is easily detected

46

Free Matlab implementation, http://www.inrim.it/res/tf/allan.shtml
CANVAS by NRL @ https://goby.nrl.navy.mil/canvas/download/
STABLE 32 Users: Upgrade to version 1.5
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We insert a “threshold” surface to detect increase of 
instability

Reference surface= 
nominal clock

σTH (t, τ) = γ τ-1/2
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The threshold surface may reveal a noise increasing in time
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Demonstrating stationarity

DADEV
of a new space Rubidium atomic frequency 
standard, the Robust-RAFS, developed by 
Orolia Switzerland SA (SpectraTime). 
The clock manufacturer demonstrates to
the customer that the Robust-RAFS follows 
the specifications throughout the entire 
performance test.

(courtesy of Fabien Droz)
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courtesy of Ricardo Hernández-Pérez

R. Hernández-Pérez, L. Guzmán-Vargas, I. Reyes-Ramírez, and F. Angulo-Brown, .Evolution
in time and scales of the stability of heart interbeat rate,.Europhysics Letters, vol. 92, no. 6,
Dec. 2010.

Application to cardiology

DADEV of the heart 
interbeat rate for a 
normal patient

DADEV of the heart interbeat rate 
for a patient suffering from CHF 
(congestive heart failure)



Varenna 2016

©
 P
at
ri
zi
a
Ta

ve
lla

, I
N
RI
M
, T

or
in
o

1. The instability of time varying quantities may be highly
impacting

2. Instability may be estimated by appropriate tools
mathematical models including noises can be written

3. Models allow estimation, prediction, simulation, control

4. The behaviour may change due to ageing, failures, 
wearing… These changes are to be detected (rapidly) 
and the model is be dynamically updated

5. How many other statistical tools are useful in Metrology?


