Photonics walking up a human hair

Diederik Wiersma

LENS (European Lab. Non-linear Spectroscopy) INRIM (National Institute Metrology Research) Univ. of Florence

European Research Council Established by the European Commission

Laws of physics – big and small

Diederik Wiersma

European Lab. for Non-linear Spectroscopy (LENS) National Laboratory for Metrology Research (INRIM) Univ. of Florence

What do we want to do?

Photonic micro movement on length scale 1-100 μ m

deformation / movement

light

The team

Light induced deformation

Dye-doped liquid crystal elastomer

Peter Palffy-Muhoray, Kent State Univ.

Micrometer scale movement in fluids: Low Reynold's number physics

$$\operatorname{Re} = \frac{\operatorname{inertial forces}}{\operatorname{viscous forces}} = \frac{\rho \mathbf{v} L}{\mu} = \frac{\mathbf{v} L}{\nu}$$

Trying to swim in honey

Non-reciprocal motion

Elastomers

New **mesogen** synthesized in order to change the polymerization direction and to improve the allignment

Reaction contidions:

- a) MeOH, H₂SO₄, reflux, 18 h, 99%
- b) Cl-hexanol, K₂CO₃, Nal, NMP, 85°C, 1 n, 100%
- c) MeOH, KOH, 50°C, 13 h, 95%
- d) NMP, rt, 3 h, 88%
- e) DCC, DCM, 4-pyrrolidine pyridine, 1 n, 79%

J. D. Marty, M. Mauzac, C. Fournier, I. Rico-Lattes, A. Lattes, Liq. Cryst. 2002, 29, 529 – 536

New polymerizable dye with absorbtion at higher wavelenght

Reagents and conditions:

- a) 6-chloro-1-hexanol, K₂CO₃, Nal, DMF, 80° C, 18 h, 70%;
- b) NaNO₂, HCl, 0-5° C, then addition of the aniline in MeOH, 5° C, 2 h, 50%;
- c) acryloyl chloride, Et₃N, CH₂Cl₂, rt, 2 h, 79%.

Liquid crystalline Cross-linker

Reaction contidions:

a) K₂CO₃, BnBr, acetone, reflux, 18 h, 51%; b)6-chloro-hexanol, K₂CO₃, DMF, KOH, 100°C, 18 h, 84%; c)Pd/C, H₂, DCM, rt, 18 h, 100%; d)NaOH, H₂O, rt, 4 h, 63%; e) NMP, 3 h, rt, 88%; f)EtOH:NH₃ 33%, 6:1, 2 h, rt, 83%; g) DCC, DCM, 4-pyrrolidine pyridine, rt, 1 n, 39%

Dye containing cross-linker

Reaction contidions:

a) 6-chloro-hexanol, K_2CO_3 , DMF, 100°C, 18 h, 83%; b) Pd/C, H_2 , MeOH, rt, 18 h, 99%; c) 1. HCl, H_2O , 2. NaNO₂, H_2O , 0°C, 3. PhOH, NaOH, 30 min, 0°C, 85%; d) 6-chloro-hexanol, K_2CO_3 , DMF, 100°C, 18 h, 91%; e) DCC, DCM, 4-pyrrolidine pyridine, rt, 1 n, 67%.

Pure CPL 9 on rubbed substrate

~5min to obtain monodomain

Left 45 degree to cross polarizer Right 90 degree to cross polarizer

Micro structuring

Direct laser writing

Adv. Mater. 26, 2319 (2014).

Preliminary results

- All polymer combined optical components
- Controlled alignment of liquid crystals
- Actuators, arms, legs, and wrists....

Many things go wrong

But some things go right...

Optically Controlled Elastic Micro-laser

Light: Science & Applications 4, e282 (2015)

Elements for robotics

Engineering the alignment of the elastomer

Linear actuator and oscillator

• 20-200 micron diameter, 5cm in length possible

Light driven rotation actuator

• 80 micron diameter twisted fiber

Light driven bending actuator

LCE IPL

• Bi-layer of stiff material (IPL resin) combined with LCE

Small walking creatures

Frank Glaw et al., Microendemic Leaf Chameleons, Northern Madagascar (2012).

Light fueled microscopic walker

Friction due to van der Waals force

Friction_{left}

Conclusions

- Polymers and elastomers can be formed into high quality microstructures
 - Free form shape and local alignment
 - Photonic components
 - Light deformation interaction and feedback
- Micro robotics with light
 - Smallest walking creature
 - Can contain photonic functionality
 - Energy from environmental light

The end