

SEARCH FOR DARK MATTER AT LHC

Marco Cipriani Università di Roma La Sapienza INFN Roma

SHEDING LIGHT ON DARK MATTER

• indirect search:

Dark matter (DM) annihilation into Standard Model (SM) particles

SHEDING LIGHT ON DARK MATTER

direct search:

DM scattering on nucleons

SHEDING LIGHT ON DARK MATTER

search at colliders:

DM production from proton-proton collisions at LHC

I will present CMS results

DARK MATTER SIGNAL AT LHC

MONOJET EVENT

exploit radiation from initial state as a trigger

look for events with high missing transverse energy (MET or $\vec{\mathbb{E}}_T$)

SIGNAL SELECTION

 \rightarrow 1 high energy jet recoiling against \mathbb{E}_T

- > Njets ≤ 2
- > noise cleaning on leading jet
- \triangleright jet 1 $p_T > 110 \text{ GeV}$;
- > second jet allowed if: $\Delta \phi(jet1, jet2) < 2.5$
- > photon veto
- > lepton veto

$$ec{\cancel{\mathbb{E}}}_T = -\sum_{\substack{all\particles}} ec{p}_T$$

 \vec{p}_T : momentum in transverse plane

SIGNAL SELECTION

ightarrow 1 high energy jet recoiling against \mathbb{E}_T

$$>$$
 Njets ≤ 2

- > noise cleaning on leading jet
- \triangleright jet 1 $p_T > 110 \text{ GeV}$;
- > second jet allowed if: $\Delta \phi(jet1, jet2) < 2.5$
- > photon veto
- > lepton veto

$$ec{\cancel{\mathbb{E}}}_T = -\sum_{\substack{all\particles}} ec{p}_T$$

 \vec{p}_T : momentum in transverse plane

MONOJET BACKGROUNDS

everything in SM that produces jets and E_T

signal

backgrounds

main backgrounds

- $Z(\nu\nu) + jets$ (55%)
- W(lv) + jets (40%) (if *l* is lost)

estimated from data using control samples

others:

- $t\bar{t}$, single top
- · QCD multijet
- diboson

estimated from MC

DATA DRIVEN BACKGROUND ESTIMATE

- select a control sample in data
- use MC to get transfer factors from control region (CR) to signal region (SR)

MET defined here excluding Z or γ p_T in the sum

MET RESOLUTION AND RESPONSE

contribution

assess the performance of the hadronic recoil reconstruction

Use Z(ll) + jets events: induce MET by removing the well-measured leptons

RUN 1 RESULTS

complementarity with respect to direct searches collider searches are also sensitive to low DM mass

RUN 2 PERSPECTIVES

need 5 fb^{-1} at 13 TeV to be competitive with Run 1

- signal from fit to MET distribution: higher sensitivity than "cut&count"
- more control samples for background estimate

SUMMARY

- ✓ monojet analysis for dark matter search at LHC presented
 - simple experimental signature: 1 jet and \mathbb{E}_T

- ✓ Run 2 and data taking at 13 TeV at LHC has begun
 - enhanced sensitivity thanks to higher energy collisions
 - with $5fb^{-1}$ we are as sensitive as previous Run 1 ($\approx 20fb^{-1}$)
- √ many improvements in the analysis during Run 2
 - more control samples to estimate the backgrounds
- √ collider and direct searches complement each other

BACKUP

COMPACT MUON SOLENOID

COMPACT MUON SOLENOID

COMPACT MUON SOLENOID

 η differences are Lorentz invariant for high energy particles

INTERPRETATIONS OF RUN 1 RESULTS

observed limit on cross section depends on DM mass and interaction with SM

can be translated into limit on DM-nucleon scattering cross section

different sensitivity from various experiments can lead to controversial results

