101° Congresso Nazionale SIF – Roma

Studio della struttura a cluster dei nuclei neutron-rich ¹⁰Be e ¹⁶C attraverso reazioni di break-up

Daniele Dell'Aquila

Università degli studi di Napoli "Federico II" & INFN – Sezione di Napoli for the CHIMERA Collaboration

dellaquila@na.infn.it

Roma, 22 Settembre 2015

Exotic structures in light nuclei: an interesting scenario

Complexity of nuclear force \rightarrow dominant phenomena of nucleon-nucleon correlations which determine a spatial re-organization of the nucleons in bounded sub-units \rightarrow the constituent clusters.

The ¹⁰Be case

J	J(J+1)	E _x (MeV)
0	0	6.18
2	6	7.54
4	20	10.15 <mark>[4]</mark>

J	J(J+1)	E _x (MeV)
0	0	0
2	6	3.37
4	20	11.78 [14] →11 [2] (?)

[14] H.G. Bohlen et al., Phys. Rev. C 75, 054604 (2007)

- [2] D. Suzuki et al., Phys. Rev. C 87, 054301 (2013)
- [3] Y. Kanada-En'yo, J. Phys. G 24, 1499 (1998)
- [4] M. Freer et al., Phys. Rev. Lett. 96, 042501 (2006)
- [5] N. Soic et al., Europhys Lett. 34, 7 (1996)
- [6] M. Freer et al., Phys. Rev. **C 63**, 034301 (2001)
- [7] H.T. Fortune and B. Sherr, Phys. Rev. **C 84**, 024304 (2011)
- [8] N.I. Ashwood et al., Phys. Rev. C 68, 0107603 (2004)
- [9] N. Curtis et al, Phys. Rev. **C 64**, 044604 (2001)
- [10] R. Wolsky et al., Phys. of Atom. Nucl. **73**, 1405 (2010)
- [11] F. Kobayashi and Y. Kanada-en'yo, J. Phys.: Conf. Ser. **436**, 012042 (2013)
- [12] S. Ahmed et al., Phys. Rev. C 69, 024303 (2004)
- [13] N. Curtis et al. Phys. Rev. **C 73**, 057301 (2006)

Rotational band in dimeric structure \rightarrow very interesting case

possible cluster configurations \rightarrow AMD calculations Ref. [1]

Experimental evidence still missing!

FRIBs Facility @ LNS

INFN - Napoli

ø

Univ. degli Studi di Napoli Federico II

Istituto Nazionale di Fisica Nucleare LNS - Laboratori Nazionali del Sud

[1] I. Lombardo et al., Nuc. Phys. **B 215**, 272 (2011).

Beam production→IFF (In Flight Fragmentation) technique → FRIBs (Flight Radioactive Ion Beams) facility @ INFN-LNS:

- $^{18}O^{7+}$ at 56 *MeV*/*u* (superconducting cyclotron K800);
- ⁹Be (1,5 mm tickness) production target;
- LNS-FRS (Fragment-Recoil Separator) $B\rho \approx 2,8Tm$;

Tagging system [1] (particle by particle identification):

• MCP large area detector;

FRIBs Facility @ LNS

INFN - Napoli

3

Univ. degli Studi di Napoli Federico II

Istituto Nazionale di Fisica Nucleare LNS - Laboratori Nazionali del Sud

[1] I. Lombardo et al., Nuc. Phys. **B 215**, 272 (2011).

Beam production → IFF (In Flight Fragmentation) technique → FRIBs (Flight Radioactive Ion Beams) facility @ INFN-LNS:

- $^{18}O^{7+}$ at 56 *MeV*/*u* (superconducting cyclotron K800);
- ⁹Be (1,5 mm tickness) production target;
- LNS-FRS (Fragment-Recoil Separator) $B\rho \approx 2,8Tm$;

Tagging system [1] (particle by particle identification):

- MCP large area detector;
- **DSSSD** position sensitive detector ($\approx 13m$ after);

FRIBs Facility @ LNS

Istituto Nazionale di Fisica Nucleare LNS - Laboratori Nazionali del Sud

[1] I. Lombardo et al., Nuc. Phys. **B 215**, 272 (2011).

Beam production →IFF (In Flight Fragmentation) technique → FRIBs (Flight Radioactive Ion Beams) facility @ INFN-LNS:

- ¹⁸O⁷⁺ at 56 MeV/u (superconducting cyclotron K800);
- ⁹Be (1,5 mm tickness) production target;
- LNS-FRS (Fragment-Recoil Separator) $B\rho \approx 2,8Tm$;

Tagging system [1] (particle by particle identification):

- MCP large area detector;
- **DSSSD** position sensitive detector ($\approx 13m$ after);

Identification (Δ E-ToF) plot FRIBs cocktail beam \rightarrow good performances.

High exotic beams intensity:

- ¹⁶C (49,5 *MeV*/*u*) 10^5 *pps*;
- ¹³B (49,5 *MeV*/*u*) $5 \cdot 10^4$ *pps*;
- ¹⁰Be (56,0 *MeV*/*u*) $4 \cdot 10^4$ *pps*;

Napoli

INFN

ø

Complete cocktail beam identification

The CHIMERA 4π multi-detector

CHIMERA (Charged Heavy Ion Mass Energy Resolving Array) [1,2]

[1] A. Pagano, Nucl. Phys. News 22, 25 (2012)
[2] A. Pagano et al., Nucl. Phys. A 734, 504 (2004)

- 1192 Δ E-E telescopes (~300 μm Si + CsI(TI) scintillator);
- 9 forward rings $(1^{\circ} \le \theta \le 30^{\circ});$
- 17 rings sphere $(30^{\circ} < \theta \le 176^{\circ});$

First 3 forward rings \rightarrow 144 telescopes (1° $\leq \theta \leq$ 7°) complete azimuthal coverage $\rightarrow \Delta E-E$ identification technique.

Good ⁴He – ⁶He separation \rightarrow beryllium line mainly dominated by ¹⁰Be

ΔE -E identification \rightarrow good isotopic separation

Found **bumps** corresponding to **excited states** known in literature (vertical arrows) \rightarrow interesting peak at about 13.5 MeV.

Smooth efficiency for both the possible target nuclei (^{12}C and ^{1}H from the polyethylene CH₂ target used) \rightarrow MonteCarlo simulation

Flat **spourious background** contribution → **event mixing** procedure.

Possible evidence of a new excited state at about 13.5 MeV not reported in literature.

⁶He+⁴He channel: the ¹⁰Be structure

Angular correlation analysis on 13.5 MeV state \rightarrow high spin contributions \rightarrow possible 6⁺ assignement \rightarrow agreement with the recent R-matrix calculation in resonant elastic scattering ⁶He+⁴He experiment [1]

⁶He+⁴He channel: the ¹⁰Be structure

Angular correlation analysis on 13.5 MeV state \rightarrow high spin contributions \rightarrow possible 6⁺ assignement \rightarrow agreement with the recent R-matrix calculation in resonant elastic scattering ⁶He+⁴He experiment [1]

Possible 6⁺ further member of the K=0⁺ molecular band \rightarrow low statistics \rightarrow new experiments are needed.

Continuation of the ¹⁰Be molecular band

⁶He+⁴He channel: the ¹⁰Be structure

As a final test \rightarrow complete MonteCarlo simulation with the 13.5 MeV state (shadowed histogram) \rightarrow nice agreement with the experimental data (black points)

[9] G.V. Rogachev et al., J. Phys.: Conf. Ser. 569, 012004 (2014)

The ¹⁰Be spectroscopy

Low statistics results \rightarrow 20,6 MeV bump

CLIR (**C**lustering in Light Ion Reactions) February– June 2015 \rightarrow new investigation of cluster structures in nuclear reactions induced by FRIBs beams at INFN-LNS

FARCOS array [2] coupled to CHIMERA device → improved energy and angular resolution → DSSSD+CsI detectors.

CLIR (Clustering in Light Ion Reactions) February– June 2015 → new investigation of cluster structures in nuclear reactions induced by FRIBs beams at INFN-LNS

FARCOS array [2] coupled to **CHIMERA** device \rightarrow **improved** energy and angular resolution \rightarrow **DSSSD+CsI** detectors.

 Δ E-E identification plot with FARCOS DSSSD (1500 µm) vs CsI fast ¹⁶O+C @ 55 MeV/u

Data acquisition in progress...

- We have performed a spectroscopic investigation of ¹⁰Be and ¹⁶C via cluster breakup reactions at intermediate energies at INFN-LNS.
- The cocktail beam was provided by the FRIBs facility \rightarrow particle by particle identification \rightarrow tagging system coupled to CHIMERA 4 π multi-detector.
- ⁶He-⁴He correlations → structure of ¹⁰Be → new possible 6⁺ state at about 13.5 MeV excitation energy → possible agreement with a recent R-matrix calculation [1] (resonant elastic scattering data) → energetic compatibility with a 6⁺ further member of the ¹⁰Be molecular band.
- ⁶He-¹⁰Be correlations \rightarrow structure of ¹⁶C \rightarrow very low statistics data \rightarrow agreement with previous experiment enhancement at about 21 MeV excitation energy.

Future Perspectives: CLIR experiment INFN-LNS February 2015 – June 2015.

[1] G. Rogachev et al., J. Phys.: Conf. Ser. **569**, 012004 (2014)

Thank you for your attention.

