Entropy strikes again: computer simulations of a fully entropy-driven cholesteric phase

<u>Simone Dussi</u>, Marjolein Dijkstra

Soft Condensed Matter, Debye Institute, Utrecht University

101 Congresso SIF Roma 22-09-2015

Entropy & Colloids

Hard Spheres

Entropy & Colloids

Hard Spheres

In a solvent (Brownian motion)

Phase behaviour of concentrated suspensions of nearly hard colloidal spheres P. N. Pusey & W. van Megen*

Nature (1985)

Entropy & Colloids

Hard Spheres

Hard Spheres in Spherical Confinement

B. De Nijs, S. Dussi* et al.* Nature Materials 14, 56 (2015)

Hard Rods

Local Nematic Order

T. Besseling, S. Dussi et al. to be submitted

Hard Rods & Hard Spheres

H. Bakker, S. Dussi et al. to be submitted

Colloidal nematics

nematic director

CHOLESTERIC

Silica rods (also TMV, gibbsite, boehmite ...)

Courtesy of Henriëtte Bakker SCM group, Utrecht Filamentous viruses (fd, M13, but also DNA, helical flagella...)

Tombolato, Ferrarini, Grelet Phys. Rev. Lett. (2006)

Pitch

Dogic, Fraden *Langmuir* (2000)

Phys. Rev. Lett. (2003)

Can entropy alone stabilize cholesterics?

Theory says yes

Frezza, Ferrarini et al.

Harris, Kamien, Lubensky Phys. Rev. Lett. (1997) Rev. Mod. Phys. (1999)

Our work: Phys. Rev. E (R) (2014) J. Chem. Phys. (2015)

Theory says yes

Frezza, Ferrarini et al.

Straley (1976)

Harris, Kamien, Lubensky Phys. Rev. Lett. (1997) Rev. Mod. Phys. (1999)

Our work: Phys. Rev. E (R) (2014) J. Chem. Phys. (2015)

Any evidence from simulations?

"In printero" synthesis...

First (?) simulation of entropy-driven isotropic-cholesteric transition

NPT-MC simulations under P.B.C.

First (?) simulation of entropy-driven isotropic-cholesteric transition

NPT-MC simulations under P.B.C.

Particles colored according to orientation

How to determine the equilibrium pitch?

Periodic Boundary Conditions

Nematic director -> remove drift -> fit $|\cos(\vartheta(z))|$ to extract pitch

Hard walls (NVT ensemble)

Promising method

Effect of hard walls (that usually introduce biaxial order) seems negligible

Racemic mixtures do not phase separate

50:50 Right/Left mixture

Colored according orientation

Red=right-handed **Green**=left-handed

Conclusions & Outlook

- A simple model of hard chiral particles, namely twisted prisms, allowed the first computer simulations of a fully entropic cholesteric phase. The equilibrium cholesteric pitch, obtained by using two hard walls, is in a good agreement with our theory.
- Such a simple model can be used in future studies on
 - nucleation of a cholesteric phase
 - wetting/interfacial behaviour
 - particle dynamics
 - chiral colloidal membranes

Dogic Lab (Brandeis) Nature 2012,2014

Acknowledgments

- Marjolein Dijkstra
- Simone Belli
- René van Roij
- SCM group @ Utrecht University

Thank you for your attention!

