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•  nucleo:sistema quantistico di fermioni fortemente interagenti, 
di due tipi (neutroni e protoni) 

La studio della struttura nucleare di “bassa energia” parte dal 
comportamento caratteristico dei sistemi nucleari vicini allo stato 

fondamentale (temperatura T~0), bassi valori del momento angolare 
totale e rapporto N/Z sulla valle di stabilita’.  Le caratteristiche dei 
sistemi variano se modifichiamo l’energia del sistema (aumentando 
percio’ il parametro “temperatura”) o il momento angolare totale, 

tramite ad esempio reazioni di fusione.  L’interesse qui e’ nello 
studiare come variano le proprieta’ dei sistemi al variare del grado di 

N/Z, nel mettere in evidenza nuovi aspetti e fenomeni e nel 
considerare le conseguenze di queste proprieta’ sui vari modelli 

nucleari.  
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interactions, governs the dynamics and proper-
ties of quarks and gluons that form baryons and
mesons (“Probing Matter at Subnuclear Scales,”
SciDAC Review, Summer 2007, p36). Hence, it is
also responsible for the forces that bind nuclei. In
this area, significant progress is being made by
computing properties of inter-nucleon forces
using the effective field theory (EFT), which starts
from an effective Lagrangian that retains the basic
symmetries of QCD and is constructed in terms
of nucleon and pion fields and their derivatives.
A power-counting scheme enables one to write
down various terms of the nuclear interaction in
a systematic way. The unknown low-energy cou-
pling strengths that appear in the expansion must
be determined from experiment, or eventually
from lattice QCD. 

An important breakthrough in nuclear theory
came more than 30 years ago with the realization
that three-body forces are an integral part of the
nuclear problem because two-nucleon forces
alone could not account for the binding energy of
the triton, or alpha particle. Of course, it is a nat-
ural idea since nucleons are not point particles.
At the time several models of three-nucleon
forces were developed, but the capability to cal-
culate the effect of three-body forces in all but the
smallest nuclei did not occur until the last 10
years. In fact, the beauty of EFT has been to sys-
tematically define what those forces should look
like. 

The main ingredient of DFT is the energy den-
sity functional that depends on densities and cur-
rents representing distributions of nucleonic
matter, spins, momentum, and kinetic energy and
their derivatives (gradient terms). Standard func-
tionals used in nuclear DFT calculations have
been parameterized by means of about 10 cou-
pling constants that are adjusted to basic proper-
ties of nuclear matter (such as saturation density,
binding energy per nucleon) and to selected data
on magic nuclei. The functionals are augmented
by the pairing term which describes nuclear
superfluidity. When not corrected by additional
phenomenological terms, standard functionals
reproduce total binding energies with a root
mean square error of  about 2 MeV; however, they
have been successfully tested over the whole
nuclear chart on a broad range of phenomena and
usually perform quite well when applied to energy
differences, radii, and nuclear moments and defor-
mations. Historically, the first nuclear energy den-
sity functionals appeared in the context of
Hartree–Fock or Hartree–Fock–Bogoliubov
methods and zero-range interactions such as the
Skyrme force. However, it was realized after-
wards that—in the spirit of DFT—an effective
interaction could be secondary to the functional,
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Figure 4.  The basic elements (degrees of freedom) of strongly-interacting matter
depend on the energy of the experimental probe and the distance scale. The building
blocks of the theory of strong interactions, quantum chromodynamics (QCD), are quarks
and gluons. Hadrons (baryons and mesons) can often be described by the dynamics of
the effective (or constituent) quarks, with the gluon degrees of freedom being integrated
out. The classical nuclear physics problem is an effective approximation to QCD. It
involves a strongly interacting quantum mechanical system of two fermionic species,
protons and neutrons. A common starting point for nuclear physics is an inter-nucleon
interaction, represented by a potential or by a set of meson-exchange forces. For complex
nuclei, calculations involving all protons and neutrons become prohibitively difficult.
Therefore, a critical challenge is to develop new approaches that identify the important
degrees of freedom of the nuclear system and are practical in use. Such a strategy is
similar to what is being used in other fields of science, in particular in condensed matter
physics, atomic and molecular physics, and quantum chemistry. Of particular importance
is the development of the energy density functional, which may lead to a comprehensive
description of the properties of both finite nuclei and extended asymmetric nucleonic
matter. Here, the main building blocks are the effective fields represented by local proton
and neutron densities and currents. Finally, for certain classes of nuclear models, in
particular those representing emergent many-body phenomena that happen on a much
lower energy scale, the effective degrees of freedom are collective coordinates describing
various vibrations and rotations and the large-amplitude motion as seen in fission.
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Le diverse linee di ricerca  
in campo nucleare sono legate  
a diverse scale di energia in 
gioco, alcune ben separate, 
altre meno (a bassa energia  
gradi di liberta’ di particella  
singola e collettivi coesistono) 



Una prima importante linea di ricerca:  cercare di comprendere 
la fisica nucleare a partire dai costituenti fondamentali. 

Pertanto descrivere i nuclei come sistemi di nucleoni (magari 
puntiformi e non-relativistici) interagenti tramite forze realistiche 

effettive nucleone-nucleone (e eventualmente a tre corpi) 
basate su scambi di mesoni o approcci chirali (perturbativi e non-

perturbativi) 
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A partire dalle interazioni basate su EFT diversi gruppi stanno  sviluppando  
modelli e calcoli ab initio per nuclei  leggeri, con l’obiettivo ambizioso di una  
consistente descrizione di struttura e reazioni, riproducendo da un lato le  
proprieta’ spettroscopiche di struttura (livelli di bassa energia, funzioni di  
risposta alle diverse sonde, fattori spettroscopici di particella singola,  
distribuzioni di densita’) in parallelo con le proprieta’ dinamiche.  

Gruppi attivi in Italia a Pisa, Trento, Bologna 

Questi approcci vengono applicati anche ai sistemi fuori dalla valle di stabilita’ 
(tipico esempio 6He).  



Un esempio: il nucleo 6He 

r	

R	

r	

R	

n	

n	

α

A partire dalle interazioni basate su EFT diversi gruppi stanno  sviluppando  
modelli e calcoli ab initio per nuclei  leggeri, con l’obiettivo ambizioso di una  
consistente descrizione di struttura e reazioni, riproducendo da un lato le  
proprieta’ spettroscopiche di struttura (livelli di bassa energia, funzioni di  
risposta alle diverse sonde, fattori spettroscopici di particella singola,  
distribuzioni di densita’) in parallelo con le proprieta’ dinamiche.  
Questi approcci vengono applicati anche ai sistemi fuori dalla valle di stabilita’ 
(tipico esempio 6He).  
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FIG. 1. (Color online) Panel (a): Most relevant hyperradial components ũ⌫K(⇢) of the ↵+n+n relative motion [see Eq.(3)]
within the 6He g.s. after projection of the ⇤ = 2.0 fm�1 full NCSMC wave function in the largest model space (blue solid lines)
as well as of its NCSM portion (red dashed lines) into the orthogonalized microscopic-cluster basis. Panel (b) and (c): Contour
plots of the probability distribution obtained from the projection of the full NCSMC wave function of panel (a) and its NCSM
component, respectively, as a function of the relative coordinates rnn =

p
2 ⌘nn and r↵,nn =

p
3/4 ⌘↵,nn.

in small model spaces. Conversely, the square-integrable
eigenstates supply many-body correlations that are not
accounted for in a microscopic-cluster expansion includ-
ing only the g.s. of 4He, such as the one shown in the
first column of the table (note that 6He is unbound in the
analogous calculations for ⇤ = 2.0 fm�1). As shown in
Fig. 1(a), the 4He(g.s.)+n+n portion of the basis serves
also the important role of providing the correct asymp-
totic behavior and extended configurations of the hyper-
radial motion typical of a Borromean halo such as 6He.

The projection over the orthogonalized microscopic-
cluster basis of Eq. (3) captures 97% of the original
NCSMC solution, confirming the ↵+n+n picture of the
6He g.s. To visualize its spatial structure, we present in
Fig. 1(b) the contour plot of the associated probability
distribution. This displays the characteristic dominance
of the “di-neutron” configuration (two neutrons about 2
fm apart orbiting the core at a distance of about 3 fm)
over the “cigar” picture (two neutrons far from each other
with the ↵ particle in between) already seen in numerous
previous studies [8, 11, 23, 35–38]. While these structures
are already captured by the square-integrable portion of
the basis [see Fig. 1(c)], they are more spatially extended
in the full calculation.

The rms matter and point-proton radii obtained from
the computed NCSMC g.s. wave functions using the more
‘realistic’ ⇤ = 2.0 fm�1 momentum resolution are shown

TABLE II. Summary of the results presented in Fig. 2, with
⇤

lowk in units of fm�1. See text for further details.

S
2n (MeV) rm (fm) rpp (fm)

NCSMC (N
max

= 10) 0.94(5) 2.43(2) 1.88(2)
NCSM [8] (N

max

= 1) 0.95(10) — 1.820(4)
EIHH [7] (⇤

lowk = 2.0) 0.82(4) 2.33(5) 1.804(9)
Exp. 0.975 2.32(10) 1.938(23)

together with the corresponding two-neutron separation
energy (S

2n

) in Fig. 2 and summarized in Table II. Also
shown as shaded bands are the accurate S

2n

measure-
ment of Ref. [2], the range of experimental matter radii
spanned by the the values and associated error bars of
Refs. [39–41], and the bounds for the point-proton radius
as evaluated in Ref. [7] from the charge radius reported
in Ref. [3]. All three observables exhibit a considerably
weaker dependence on the size of the HO basis compared

[7]

[8]

FIG. 2. (Color online) NCSMC (blue solid lines) and NCSM
(red dashed lines) rms matter (triangles) and point-proton
(squares) radii, and two-neutron separation energy (circles),
obtained using the SRG-N3LO NN interaction with ⇤ = 2.0
fm�1 as a function of the HO basis size. Also shown are
the infinite-basis extrapolations from Ref. [8] and the EIHH
results from Ref. [7] at the resolution scales ⇤

lowk = 1.8, and
2.0 fm�1. The range of experimental values are represented
by horizontal bands (see text for more details).

Sofia Quaglioni etal 
No-core shell model with continuum 
(NCSMC) 
N3LO NN with SRG renormalization 
EIHH Effective interactions  
Hyperspherical Harmonics 

Λ: momentum  
         “cut-off” 
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In questa zona di nuclei leggeri le drip line sono  relativamente 
vicine e ormai molto si  conosce sperimentalmente sui nuclei fino 
alle drip line , caratterizzati da energie di legame sempre piu’ 
piccole, (estendendo le conoscenze in alcuni casi anche oltre le drip 
line).  Questa situazione di weak-binding ha da un lato aperto tutto 
il filone dei nuclei con alone (e dei nuclei borromei) e da un punto di 
vista teorico portato allo sviluppo  di modelli legati al problema del 
trattamento del continuo e degli open systems. 

Mean-field calculation: position of Fermi surfaces 

proton 

neutron 

Proton drip-line 

Neutron drip-line 

livelli occupati 



• Funzione d’onda estesa

• Facilità di transizioni nel
continuo

• Facililtà di fenomeni di
break-up

Peculiarità dei nuclei leggeri ricchi di n

11Be 10Ben

Sn=504 keV

Se si misura Sn che è circa 0.5 MeV, si
deduce che η~1/6 fm-1.

La dimensione dell’ “alone” neutronico
nel 11Be è circa il doppio della
dimensione del “core”.

R0 A1/3 = 2.67 fm

48Ca	

Raggi: deviazione dalla usuale legge A1/3 Ultimo neutrone sulla shell 1p1/2 

11Li 19C 
11Be 



Come misurare o evidenziare un possibile alone? 
ad esempio “misurando” la densita’ in reazioni tipo P+12,14Be  
in cinematica inversa (ad esempio a 700 MeV/u al GSI ,Ilieva etal) 

neutron 
halo 

neutron 
skin 

proton 
halo 

10He 

neutron drip line      

Cluster  
configuration 

10Be 



Scattering elastico analizzato nel modello di Glauber:   
Sensibilita’ a diverse parametrizzazioni della densita’ 

Distributione angolare elastica distributioni di densita’ 

Misura della densita’ del nucleo 14Be 

14Be 14Be + p 



Una linea di ricerca fondamentale: natura dell’interazione 
di pairing in sistemi nucleari diluiti 

(ad esempio nel nucleo con alone  11Li, che e’ 
legato solo grazie all’interazione tra gli ultimi due neutroni) 

A""dynamical"descripDon""
of""two'neutron"halos"

11Li$
F."Barranco"et"al."EPJ"A11"(2001)"385""
"
12Be$
G."Gori"et"al."PRC"69"(2004)"041302(R)""
"

Induced"interacDon""

Energy'dependent"matrix""

Bare""interacDon""

Interazione di pairing effettiva: in 
aggiunta all’interazione nuda vi e’ 
il contributo ottenuto tramite  
interazione con le vibrazioni della  
superficie  
(estensione del particle-vibration 
coupling nell’ambito della Nuclear 
Field Theory) 

Broglia, Vigezzi, etal 

NB Test della pairing via reazioni di trasferimento di due nucleoni,  
in cinematica inversa  p(11Li,9Li)t 



Ab Initio

Configuration Interaction

Density Functional Theory

Nuclear Landscape
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Figure 1.   The theoretical methods and computational techniques used to solve the nuclear many-body problem. On this chart of the nuclides in the
(N,Z)-plane, the black squares represent stable nuclei and the yellow squares indicate unstable nuclei that have been produced and studied in the
laboratory. The many thousands of these unstable nuclei yet to be explored are indicated in green (terra incognita). Except for the lightest nuclei, where it
has been reached experimentally, the neutron drip line (the rightmost border of the nuclear landscape) has to be estimated on the basis of nuclear
models—hence it is very uncertain due to the dramatic extrapolations involved. The red vertical and horizontal lines show the magic numbers, reflecting
regions where nuclei are expected to be more tightly bound and have longer half-lives. The anticipated path of the astrophysical r-process responsible for
nucleosynthesis of heavy elements is also shown (purple line). The thick dotted lines indicate domains of major theoretical approaches to the nuclear
many-body problem. For the lightest nuclei, ab initio calculations (Green’s function Monte Carlo, no-core shell model, coupled cluster method), based on
the bare nucleon–nucleon interaction, are possible (red). Medium-mass nuclei can be treated by configuration interaction techniques (interacting shell
model, in green). For heavy nuclei, the density functional theory based on self-consistent/mean field theory (blue) is the tool of choice. By investigating
the intersections between these theoretical strategies, one aims at nothing less than developing a unified description of the nucleus.

nucleon interactions offers promise to achieve
corresponding qualitative improvements in the
accuracy and applicability for nuclear physics.
Recognizing that the nucleus is composed of
fermions, neutrons, and protons, DFT is the only
tractable theory that can be applied across the
entire table of nuclides. The new challenges faced
by the nuclear DFT are the presence of two kinds
of fermions, the essential role of pairing, and the
need for symmetry restoration in finite, self-
bound systems. 

Practical Applications
Applications of nuclear physics in today’s global
economy and national security are numerous.
They include the nuclear power industry and
nuclear medicine, as well as national defense. As
has been illustrated many times in all fields of sci-
ence, improved understanding of the microworld
benefits society. Fusion and fission are excellent
examples. The description of these fundamental
nuclear processes is still very schematic, yet nuclear
fission powers reactors that produce energy for the
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Density functional theory
is built on theorems
showing the existence of
universal energy
functionals for many-
body systems.

ab initio 
shell model  

density functional 

regions of applicability      
of different 
approaches 



Per sistemi piu’ pesanti, l’approccio ab initio e’ tecnicamente improponibile. Inoltre 
i sistemi nucleari presentano spesso spettri di bassa eccitazione e altri 
osservabili caratteristici e semplici.  L’interesse si muove percio’ nel cercare di 
spiegare, a fronte di un grande numero di fermioni interagenti, il sorgere di 
semplici patterns e simmetrie. 

Spesso questi comportamenti vengono classificati sulla base di analogie con una 
descrizione geometrica del nucleo (nuclei sferici, nuclei deformati assialmente,  
deformati con simmetria triassiale, deformazione quadripolare e ottupolare, etc). 

Superficie energia  
potenziale E( β,γ ) 

Nel caso di deformazione quadrupolare, 
i parametri che definiscono la forma sono 
la deformazione β e il parametro di 
triassialita’ γ

β	

γ	

sferico prolato 

oblato 



Parametri spesso assunti come indicatori delle caratteristiche del 
sistema  sono l’energia del primo stato 2+ (nei nuclei pari-pari), il 
rapporto E(4+)/E(2+), il valore della B(E2) tra lo stato fondamentale 
e il primo 2+  

The	Magnificent	Evolu2on	of	Structure	

Challenge:	how	can	these	complex	many-body	systems	
exhibit	such	regular		pa9erns?			

Nucleonic	and	“system”	perspec>ves:			Shell	structure	and	
collec>vity.		

Ma altri indicatori sono fondamentali per caratterizzare le proprieta’ del 
sistema, oltre allo spettro e alle transizioni elettromagnetiche: ad esempio 
i fattori spettroscopici legati alle reazioni di trasferimento di un nucleone o 
le probabilita’ di trasferimento di coppie 



Da un punto di vista teorico i principali modelli utilizzati nella 
descrizione dei sistemi meio-pesanti e pesanti possono 
essere classificati in diverse categorie: 

1.  Modello a shell interagente (principalmente per sistemi medio-pesanti) 

2. Modelli basati sul funzionale densita’ (applicabile da nuclei leggeri 
    come 16O fino ai super pesanti), principalmente con interazioni tipo 
    Skyrme (somme di funzioni d e loro derivate), con estensione alla pairing. 
    Basati su metodi variazionali, producono superfici energia potenziale e  
    ulteriori formalismi devono essere utilizzati per ottenere i livelli 
    oltre lo stato fondamentale 

3. Modelli basati su simmetrie dinamiche, tipo Interacting Boson Model   
     e sue estensioni (IBM-2 con protoni e neutroni, IBMF con l’accoppiamento 
     ad un nucleone dispari, etc) 

Perche’ tanti modelli? Forse perche’ ogni singolo sistema nucleare e’ 
decisamente complesso, con molte facce, e molti aspetti da descrivere 
(massa, spettro, transizioni elettromagnetiche, fattori spettroscopici, 
moti collettivi, ……)   
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the shell is not a major shell any more.) In the shell model calculation, the
closed shells are treated as a vacuum because the nucleons cannot change
their single-particle states as long as they are in the closed shell. If one wants,
one can make particle–hole excitations from the closed shell to valence shell.
However, just for the sake of simplicity, we do not include such excitations for
the time being. Namely, we look at degrees of freedom only in the valence shell.
Because of the similarity between the closed-shell and the vacuum, the closed
shell is often called the (inert) core. When we discuss dynamical properties,
the (inert) core sounds more appropriate, but its meaning is the same as the
closed shell.

We include two-body interaction between valence nucleons. Three-body
interaction, etc. are not included, however. Usually, it is supposed that effects
of higher body (> 2 body) interactions are small enough in the energy scale
of interest and/or their effects are renormalized into effective two-body inter-
actions somehow. This is an approximation/assumption, but turns out to be
reasonable from the viewpoint of comparison to experiment. The Hamiltonian
then consists of the following terms,

H =
∑

i

ϵini +
∑

i,j,k,l

vij,kla
†
ia

†
jalak, (5)

where ϵi is the SPE of the orbit i, ni stands for the number operator of the
orbit i, vij,kl denotes two-body matrix element (TBME) of the nucleon–nucleon
(effective) interaction for orbits i, j, k, l, and a† and a mean usual creation and
annihilation operators, respectively.

In the single-particle picture of Fig. 2, a nucleon stays in one of the orbits
forever. This is true in the closed shell, because all orbits are occupied, and a
nucleon cannot move from one orbit to another within the closed shell. The
situation differs in the valence shell. Figure 9 indicates how nucleons move
via the nucleon–nucleon interaction. The occupancy pattern of nucleons over

mixing

valence
shell

closed shell
(core)

Fig. 9. Mixing of different configurations due to the scattering between valence
nucleons. A nucleon does not stay in an orbit forever. The interaction between nu-
cleons changes their occupations as a result of scattering. The pattern of occupation
is called a configuration.

Modello a shell interagente 
Idee di base: 
1.  Campo medio sufficientemente robusto da 
giustificare livelli di particella singola, da  
utilizzare come base per funzioni d;onda a piu’  
particelle per ulteriori correlazioni 
2.  Utilizzo di un core inerte e scelta di un set di 
livelli come spazio modello 
3.  Scelta di una interazione residua “efficace” 
che mescoli le configurazioni, e che abbia una 
derivazione quanto piu’ possibile “fondamentale”. 
Interazione a due e tre corpi? 
4.  Livelli di particella singola nel continuo? 
     Continuum shell model? 
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Closed shell
Excitations to higher shells are
included effectively

valence shell
Partially occupied
Nucleons are moving around

Higher shell
Excitations from lower shells
are included effectively by
perturbation(-like) methods

Effective
interaction

Effects of core
and higher shell

Fig. 11. Corrections to effective interaction used in the shell model calculations.
There are two types, one from higher shells, while the other from the closed shell

(Ladder diagram). The upper part of Fig. 11 indicates this contribution
schematically as the effects of “higher shell”.

Another contribution comes from the excitation of the core (closed shell),
as referred to as the core polarization. In a first approximation, the core is
completely occupied, but there are excitations in reality. The pairing interac-
tion is enhanced by this mechanism.

Effects of these two types of outer shells are included, ending up with the
so-called effective interaction.

The core polarization is also important for effective charge and the effective
g-factor. Figure 12 shows how the electric quadrupole moment and magnetic
moment are changed due to the excitation of the core. This phenomenon has
been proposed by Arima and Horie [6], Blin-Stoyle and Perks [7] in 1954 and
by Bohr and Mottelson [3].

We finally note that the single particle in the shell model is an “effective
object” (or quasi-particle) with rather complicated correlations behind it like
the core polarization. The shell model treats it as if it is a real particle, and
includes those correlation effects in terms of the renormalization of effective
interaction and operators. The same picture should be taken for mean-field
models (or density functional theories), where the renormalization is more
severe due to more truncated effective interactions.

The coupling to various correlations reduces the ‘purity’ of the single par-
ticle. Recent experiments show that about 60% of the “single-particle” prob-
ability remains in the shell model wave functions after the mixing of more
complicated components [8]. However, we emphasize that this is not a catas-
trophe or anything like that, and is expected.

U N I V E R S A L  N U C L E A R  E N E R G Y  D E N S I T Y  F U N C T I O N A L

DFT equations present a nonlinear eigenvalue
problem that must be solved iteratively. New
wavelet expansion techniques are being developed
to achieve better accuracy for the nuclear problem. 

The ongoing work with configuration interac-
tion techniques is also of note. The interacting
shell model, in which the configuration space is
truncated by involving valence nucleons only, can
be used to make detailed studies of nuclear struc-
ture in small regions of the nuclear chart. The
method was applied to p-shell nuclei (ranging
from N=Z=2 to N=Z=8, initially calculated in the
1960s), sd-shell nuclei (ranging from N=Z=8 to

N=Z=20, initially calculated in the 1980s), and fp-
shell nuclei (ranging from N=Z=20 to N=Z=40,
fully investigated in the 1990s–2000s). The next
frontier will be nuclei in the gds-shell region.
While the computational capability of the shell
model has been the reason for this changing
emphasis across shells, it is clear that either sig-
nificant approximations or technology break-
throughs must occur in order to tackle the next
shell because when going to heavier systems with
many active nucleons, the configuration space
explodes rapidly, resulting in combinatorial
growth in the complexity of calculations (figure
6). It is expected that efforts with NCSM will
deliver benefits to standard shell model compu-
tations as both methods rely on Krylov tech-
niques to diagonalize the Hamiltonian matrix.
Auxiliary field Monte Carlo methods which have
been developed and run on Jaguar demonstrate
an alternative to diagonalization that holds sig-
nificant promise for certain aspects of the physics
of medium mass and heavier nuclei, where the
dimensions of the model space reach 1,030.

Nuclear Energy Density Functional Theory 
Because nuclei are self-bound objects, they pro-
duce their own confining potential, or mean field.
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Figure 6.  Configuration space dimension of the interacting shell model for fp-shell nuclei.
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Figure 7.  An example of large-scale systematic density functional theory (DFT)
calculations for complex nuclei produced by the UNEDF collaboration. Results of the
deformed DFT calculations of two-neutron separation energies for 1,553 particle-bound
even–even nuclei with Z ≤ 108 and N ≤ 188.
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Figure 8.  An example of large-scale systematic DFT
calculations for complex nuclei produced by the UNEDF
collaboration. Alpha-decay energies (Qα values) for even-
even heavy and superheavy nuclei with 96 ≤ Z ≤ 118
calculated with the energy density functional SLy4. They
are compared to experimental data (closed symbols).
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La forza tensoriale di monopolo e i livelli di particella singola.  
Variazione delle chiusure di shell 

Central part: global variation of the single-particle energies  
Tensor part: characteristic behavior of spin–orbit partners, etc. 
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central + tensor j>=l+1/2 

j<=l-1/2 
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collectivity 

Shell evolution at N=20 
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collettivita’ in 32Mg 
N=20 non e’ piu’ numero  
magico 



Eccesso neutronico e migrazione di shell  
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Al variare del numero di protoni e neutroni i sistemi cambiano comportamento, con 
transizione di fase di forma da una situazione ad un’altra.  Le diverse situazioni 
possono essere descritte in termini di diverse simmetrie dinamiche  

The Bohr Equation I

This equation can be solved analytically in three special cases
which correspond to three different shapes: V (β, γ) = β2 harmonic
oscillator → spherical shapes
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The Bohr Equation II

V (β, γ) = (β − β0)2 → deformed axial shapes with a pronounced
minimum at γ = 0
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The Bohr Equation II

V (β, γ) = (β − β0)2 → deformed γ−unstable shapes
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I punti critici si trovano quasi sempre in corrispondenza di valori di 
N e Z fuori dalla stabilita’.  Un esempio e’ dato dalla catena 

isotopica del Cromo 

at the shape phase  
transition critical 
point? 

60Cr 

t1/2=0.49 s 
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1. The nickel (Z=28) region between N=28 and 50
- Laser spectroscopy of 57Cu
- Coulomb excitation of n-rich Ni, Cu and Zn isotopes
- Decay studies of n-rich Fe and Co isotopes

The	The chain of Nickel isotopes 

Figure from Piet Van Duppen 



E(2+)  

B(E2) 

L’andamento dell’energia del primo stato eccitato E(2+
1) e del valore della 

B(E2) tra 0+
1 e 2+

1    sembrano indicare una chiusura di shell (N=40) nel 68Ni. 
Ma qual e’ la natura degli stati di bassa energia? 



RAPID COMMUNICATIONS

NOVEL SHAPE EVOLUTION IN EXOTIC Ni ISOTOPES . . . PHYSICAL REVIEW C 89, 031301(R) (2014)

FIG. 3. (Color online) Potential energy surfaces (PESs) of Ni isotopes, coordinated by the usual Q0 and Q2 (or γ ). The energy relative to
the minimum is shown by contour plots. Circles on the PES represent shapes of MCSM basis vectors (see the text).

that the 0+
3 and 2+

2 states of 68Ni were reported to be strongly
deformed with β2 ∼ 0.4 in shell-model calculations in [32].

Figures 4(a) and 4(b) show occupation numbers of proton
and neutron orbits, respectively, for the 0+

1,2,3 states of 68Ni.
One sees drastic changes between the 0+

1 and 0+
3 states for

proton f7/2 and neutron g9/2, while some other orbits show also
sizable changes. Such changes are due to particle-hole excita-
tions: mainly proton excitations from f7/2 to f5/2 and p3/2,1/2,
and neutron excitations from f5/2 and p1/2 to g9/2. Once
such excitations occur, the state can be deformed towards an
ellipsoidal shape and large deformation energy is gained pre-
dominantly from the proton-neutron quadrupole interaction.
The configuration structure of the 0+

3 state seems to be beyond
the applicability of truncated shell-model calculations [35,36].

We next discuss effective single-particle energy (ESPE),
obtained from the monopole component Hm of the Hamilto-
nian (see, for instance, [4] for more details). Hm is written
in terms of the number operator nj of each orbit j (proton
or neutron is omitted). The ESPE is calculated usually for
configurations that are being filled, but we evaluate it for mixed
configurations by a functional derivative ϵj= ⟨ ∂Hm

∂nj
⟩ with the

expectation values of nj ’s for eigenstates being considered1.
These ϵj ’s are still spherical ESPEs, but are obtained with

1The contribution of identical particles in the same orbit becomes
slightly different from the one by the filling scheme, but this difference
is negligible in the present case.

⟨nj ⟩ of deformed states. From the viewpoint of the Nilsson
model, ϵj ’s correspond to Nilsson levels at the spherical limit,
but the difference from the Nilsson model is that the ϵj ’s vary
as the deformation changes, due to the orbit dependence of
the monopole component of nuclear forces. For protons, the
ESPE of f7/2 is increased by ∼2 MeV in going from 0+

1 to 0+
3

states, while ESPE of f5/2 comes down by ∼1 MeV. Let us
look into how these changes occur, based on the mechanism
presented in [4,8]: Because g9/2 and f7/2 are of j>(= l + 1/2)
type and f5/2 is of j<(= l − 1/2) type, the g9/2-f7/2 (g9/2-
f5/2) monopole interaction from the tensor force is repulsive
(attractive). More neutrons in g9/2 in the 0+

3 state result in the
raising of the proton f7/2 and the lowering of the proton f5/2.
Similarly, neutron holes in f5/2 lead to the weakening of the
attractive (repulsive) effect on the proton f7/2 (f5/2). All these
effects reduce coherently the proton f7/2-f5/2 gap (i.e., the
difference of the ESPEs of these orbits), making it ∼3 MeV
narrower in the 0+

3 state, including other minor effects.
If a relevant shell gap becomes smaller, more particle-

hole excitations occur over this gap, leading to stronger
deformation with more energy gain as mentioned above. A
stronger deformation enhances particular configurations, for
instance, more neutrons in g9/2, which reduce the proton
f7/2-f5/2 gap further. Thus, the change of the shell gap and
strong deformation are interconnected in a self-consistent way.
Figure 4(c) demonstrates this mechanism with an example
of the proton f7/2-f5/2 gap obtained for the CHF wave
function along the γ = 0◦ and 60◦ lines in Fig. 3, as a

031301-3

Large-scale Monte Carlo Shell Model (MCSM) calculations (Otsuka etal) 

E( β,γ )	

Coesistenza di piu’ forme nello stesso nucleo! 



Coesistenza di forma anche nei nuclei vicini : il caso del  70Ni 

Shape coexistence found in 
Co and Ni and  followed in the 
decay chain in A=70 isobars 
! Selectivity of β decay 
process 

A.I.Morale and G.Benzoni 
et al. submitted to PRL 



Un’altro caso di transizione di fase e di co-esistenza di forme: la 
                  catena isotopica dello Zirconio 2
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FIG. 1. (Color online) (a) 2+1,2 levels, (b) 0
+ levels of Zr isotopes

as a function of N. Symbols are present theoretical results with
the shape classification as shown in the legends (see the text for
details). Solid lines denote experimental data [6–16]. Dashed
lines connect relevant results to guide the eye. The ratio between
the 4+1 and 2

+
1 levels is shown in the insert of (a) in comparison

to experiment. The lowest four 0+ levels are shown for 100Zr. (c)
B(E2; 2+ → 0+) values as a function of N. Experimental data are
from [13, 41–46]. (d) Deformation parameter β2. The values by
other methods are shown, too.

tion to the π- and ρ-meson exchange tensor force [37]. The
parameters of the central part were fixed from monopole
components of known SM interactions [37]. The T=0 part
of the VMU interaction is kept unchanged throughout this
work. The T=1 central part is reduced by a factor of 0.75
except for 1 f7/2 and 2p3/2 orbits. On top of this, T=1
two-body matrix elements for 0g9/2 and above it, includ-
ing those given by the SNBG3 interaction, are fine tuned
by using the standard method [38, 39]. The observed lev-
els of the 2+1 and 4

+
1 states of

90−96Zr and the 0+2 state of
94−100Zr are then used. Since the number of available data
is so small, this cannot be a fit but a minor improvement.
The single-particle energies are determined so as to be con-
sistent with the prediction of the JUN45 Hamiltonian, the
observed levels of 91Zr with spectroscopic factors, etc. The
present SM Hamiltonian is, thus, fixed, and no change is
made throughout all the calculations below. It is an initial
version, and can be refined for better details.
Figure 1(a) shows excitation energies of the 2+1,2 states

of the Zr isotopes, indicating that the present MCSM re-
sults reproduce quite well the observed trends. The shape
of each calculated state is assigned as spherical, prolate, tri-
axial or oblate by the method of [40], as will be discussed
later. The calculated 2+1 state is spherical for N=52-56,
while it becomes prolate deformed for N ≥58. Its exci-
tation energy drops down at N=60 by a factor of ∼6, and
stays almost constant, in agreement with experiment. The
ratio between the 4+1 and 2

+
1 levels, denoted R4/2, is de-

picted in the insert of Fig. 1(a) in comparison to experi-
ment. The sudden increase at N=60 is seen in both ex-
periment and calculation, approaching the rotational limit,
10/3, indicative of a rather rigid deformation. The R4/2 < 2
for N ≤58 suggests a seniority-type structure which stems
from the Z=40 semi-magicity.
Figure 1(b) shows the properties of 0+1,2 states. Their

shapes are assigned in the same way as the 2+ states. The
ground state remains spherical up to N=58, and becomes
prolate at N=60. A spherical state appears as the 0+4 state
at N=60 instead, as shown in Fig. 1(b). We here sketch
how the shape assignment is made for the MCSM eigen-
state. The MCSM eigenstate is a superposition of MCSM
basis vectors projected onto the angular momentum and
parity. Each basis vector is a Slater determinant, i.e., a di-
rect product of superpositions over original single-particle
states. The optimum amplitudes in such superpositions are
searched based on quantum Monte-Carlo and variational
methods [4, 20]. For each MCSM basis vector so fixed, we
can compute and diagonalize its quadrupole matrix. This
gives us the three axes of the ellipsoid with quadrupole mo-
menta Q0 and Q2 in the usual way [2]. One can then plot
this MCSM basis vector as a circle on the Potential Energy
Surface (PES) , as shown in Fig. 2. The overlap probability
of this MCSM basis vector with the eigenstate is indicated
by the area of the circle. Thus, one can pin down each
MCSM basis vector on the PES according to its Q0 and

stabili 

3

FIG. 2. (Color online) T-plots for 0+1,2 states of
98,100,110Zr isotopes.

Q2 with its importance by the area of the circle. Note that
the PES in Fig. 2 is obtained by constrained HF calculation
for the same SM Hamiltonian, and is used for the sake of
an intuitive understanding of MCSM results. This method,
called a T-plot [40], enables us to analyze SM eigenstates
from the viewpoint of intrinsic shape. Figure 2(a) shows
that the MCSM basis vectors of the 0+1 state of

98Zr are
concentrated in a tiny region of the spherical shape, while
its 0+2 state is composed of basis vectors of prolate shape
with Q0 ∼350 fm2 (see Fig. 2(b)). A similar prolate shape
dominates the 0+1 state of

100Zr with slightly larger Q0, as
shown in Fig.2(c). We point out the abrupt change of the
ground-state property from Fig. 2(a) to (c), and will come
back to this point later. The T-plot shows stable prolate
shape for the 0+1 state from

100Zr to 110Zr (see Fig. 2(d)).
Figure 1(c) displays B(E2; 2+1 → 0+1 ) values, with small

values up to N=58 and a sharp increase at N=60, consis-
tent with experiment [13, 41–44]. The effective charges,
(ep, en) = (1.3e, 0.6e), are used. Because the B(E2; 2+1 →
0+1 ) value is a sensitive probe of the quadrupole deforma-
tion, the salient agreement here implies that the present
MCSM calculation produces quite well the shape evolu-
tion as N changes. In addition, theoretical and experimen-
tal B(E2; 2+2 → 0+2 ) values are shown for N=54 [45] and
56. The value for N=56 has been measured by experiment,
discussed in the subsequent paper [46], as an evidence of
the shape coexistence in 96Zr. The overall agreement be-
tween theory and experiment appears to be remarkable. It
is clear that the 2+2 → 0+2 transitions at N=54 and 56 are
linked to the 2+1 → 0+1 transitions in heavier isotopes, via
2+1 → 0+2 transition at N=58.
Figure 1(d) shows the deformation parameter β2 [1]. The

results of IBM [24], HFB [28] and FRDM [32] calculations
are included, exhibiting much more gradual changes. The
MCSM values are obtained from B(E2; 2+1 → 0+1 ).
The systematic trends indicated by the 2+1 level, the ra-

tio R4/2, the B(E2; 2+1 → 0+1 ) value (or β2), and the T-plot
analysis are all consistent among themselves and in agree-
ment with relevant experiments. We can, thus, identify the
change between N=58 and 60 as a QPT, where in general
an abrupt change should occur in the quantum structure of
the ground state for a certain parameter [17, 18]. The pa-
rameter here is nothing but the neutron number N, and the
transition occurs from a “spherical phase” to a “deformed
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FIG. 3. (Color online) (a) Occupation numbers of protons and
(b) effective single-particle energies of neutrons for selected Zr
isotopes. Neutron 0g9/2 is around -12 MeV, and is not shown.

phase”. Figure 1(b) demonstrates that the 0+1 state is spher-
ical up to N=58, but the spherical 0+ state is pushed up
to the 0+4 state at N=60, where the prolate-deformed 0

+

state comes down to the ground state from the 0+2 state at
N=58. This sharp crossing causes the present QPT. The
discontinuities of various quantities, one of which can be
assigned the order parameter, at the crossing point imply
the first-order phase transition. The shape transition has
been noticed in many chains of isotopes and isotones, but
appears to be rather gradual in most cases, for instance,
from 148Sm to 154Sm. The abrupt change in the Zr isotopes
is exceptional.
We comment on the relation between the QPT and the

modifications of the interaction mentioned above. With-
out them, the 2+1 level is still ∼0.2 MeV at N=60 close
to Fig. 1(a), while at N=58 it is higher than the value in
Fig. 1(a). Thus, the present QPT occurs rather insensitively
to the modifications, whereas experimental data can be bet-
ter reproduced by them.
We now discuss the origin of such abrupt changes. Fig-

ure 3(a) displays the occupation numbers of proton orbits
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Large-scale Monte Carlo Shell Model  
(MCSM) calculations (Otsuka etal) 



The shape of an atomic nucleus is one of  
its most defining characteristics, and the  
evolution of nuclear shapes with nucleon  
number gives insights into the symmetries  
of this many-body quantum system and  
into the underlying nuclear interactions.  
The osmium-platinum region shows a rich  
set of prolate, oblate, axially asymmetric, 
and co-existing shapes.  

Shape transition in the Os isotopes 

rotor spherical 

 
Shape transition  from prolate to 
oblate deformed nuclei in the Os 
isotopes 
 194Os suggested to be prolate 
198Os shows oblate character 

g-soft 
O(6) 

U(5) 
Vibrator 

SU(3) 
Rotor prolate 

2.5 

2.0 3.33 

Transizione di fase negli isotopi dell’Osmio 

196Os 

γ-instabile 



State of the art Symmetry 
Conserving Configuration Mixing 
(SCCM) calculations performed by 
T.R. Rodriguez 

196Os is a nearly perfectly  
g-unstable nucleus  

P.R.John et al., PRC90 (2014) 021301 (R) LNL 
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Pb186
82 104

Pb208
82 126

Neutron midshell, N=104

2. The lead (Z=82) region around neutron mid-shell (N=104)
- Laser spectroscopy of n-deficient Pb and Po isotopes
- Alpha and beta-delayed fission decay studies
- Coulomb excitation of n-deficient Hg isotopes

New/preliminary data and open questions!

The chain of light Lead isotopes 

J. Pakarinen,- PRC75, 014302 (2007)

Systematics neutron-deficient lead (Z=82)

Shape coexistence in the Z=82 region

• Degree of mixing in the g.s. of 186Pb?

186Pb 202Pb 208Pb 

Un altro esempio di shape-coexistence: gli isotopi neutron-poor del piombo 



sferico oblato prolato 

A. Andreyev et al., Nature 405 (2000) 430 



Spherical ? 

Deformed ? N=35 

Ni 

Co 

Fe 

36 37 38 39 40 

67Co 

Transizione di fase in sistemi nucleari o dispari-dispari.   
          Sistemi bosonico-fermionici. 
Un esempio per la shell N=40 shell.  67Co si trova tra lo sferico  (?) 68Ni e il 
deformato 66Fe, e presenta coesistenza di livelli ancora sferici e altri ormai 
deformati 



Ruolo della interazione di pairing nel canale ad isospin T=0 

Figure 20: The ratio of the isoscalar and
isovector pair correlation energies for spher-
ical N = Z nuclei assuming a ratio 3:2
for the respective interaction strengths and
a Woods-Saxon spin-orbit potential. From
[79].

Figure 21: Competition between isoscalar
and isovector pairing in heavy, very proton-
rich spherical nuclei, assuming a ratio 3:2
for the respective interaction strengths and
a Woods-Saxon spin-orbit potential. Green:
Isovector condensate, red: isocalar conden-
sate, blue: coexistence of both condensates.
From [80].

energy. In realistic nuclei with a finite level spacing there is an additional contribution from the
zero point fluctuations of the pair field about its mean values. Due to the small number of valence
particles/holes in the medium mass nuclei of relevance, one expects strong fluctuations of the pair
fields around their mean values. These fluctuations enhance the pair correlation strength substantially.
Hence the mean field values should be considered as a lower limit of the actual correlation strength.
The fluctuations were studied by Ginocchio and Weneser [60] and Neergard [67–69] in the framework
of the Quasiparticle Random Phase Approximation (QRPA). The main correction to the ground state
energy was found to be generated by the QRPA spurious mode / T+, which appears as a consequence
of breaking the isospin symmetry by the isovector mean pair field. Its contribution changes the ground
state energy from the isocranking value hT

z

i2 /2✓ to hT
z

i (hT
z

i + 1)/2✓. This correction is taken into

account by using the constrain hT
z

i =
q
T (T + 1) in the isocranking prescription. Neergard also studied

the contributions of the other QRPA modes, and obtained a T (T + X)/2 dependence of the ground
state energies on isospin, with X slightly larger than 1, the value for rigid isorotation.

In order to calculate physical quantities that are sensitive to the relative fractions of the three types
of pair correlations one needs the know the collective wave function of the pair field. QRPA should give
reliable results for large enough isospin. For T = 0, 1 it gives a reliable estimate of the total fluctuation-
induced correlation energy, however it may become problematic for estimating physical quantities that
are sensitive to di↵erences between the three types of pair fields. The comparison with the large-scale
Shell Model calculations (cf. Sect. 2.2) and the two j-shell model (cf. Sec. 2.1.2) shows that the ratios
between the fractions are relatively well reproduced by the SO(5) ratios of the one j-shell model if there
is a strong isovector condensate. One may combine the estimate for the total correlation strength with
these well known ratios for a reliable estimate.
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Bertsch etal 



Nuclei leggeri (non solo N=Z) mettono in evidenza possibili comportamenti a cluster 
(essenzialmente particelle alfa o alfa-like). 
Questi comportamenti dovrebbero essere piu’ accentuati ad energie di eccitazione in  
vicinanza delle soglie di beak-up, o, nel caso di sistemi debolmente legati vicini alle  
drip-line, gia’ nello stato fondamentale. 
Fenomeni di clusterizzazione sodo predetti da modelli diversi, microscopici e non, ad 
esempio antisymmetrized molecular dynamics (AMD]) fermionic molecular dynamics (FMD), 
BEC-like cluster model, ab initio no-core shell model, lattice EFT, no-core symplectic  
model and the Algebraic Cluster Model (ACM).  Tutti i modelli prevedono fenomeni di 
Clusterizzazione, ma non necessariamente uguali tra loro. 
Esempio:  12C 

CLUSTER STATES AND MONOPOLE TRANSITIONS IN 16O PHYSICAL REVIEW C 89, 024302 (2014)

B. Wave functions of 12C

In the previous work on 12C [29,30], the AMD+VAP
method has been applied to 12C and it has been proven
to describe well the structures of the ground and excited
states in 12C. To describe the 12C cluster in the present
12C(AMD)+αGCM calculation, I use the intrinsic wave
functions of 12C obtained with the AMD+VAP in Ref. [30].

I here briefly explain the AMD+VAP method [29,30].
More details of the method are described in Ref. [30]. As
mentioned before, the AMD wave function of 12C explained
in Eq. (1) is specified by the set of parameters, Z =
{X1,X2, . . . ,XAC

,ξ1,ξ2, . . . ,ξAC
}. In the AMD framework,

these are treated as variational parameters and determined
by the energy variation. In the AMD+VAP method, the
energy variation is performed after the spin-parity projection.
Namely, the parameters Xi and ξi(i = 1 ∼ A) are varied to
minimize the energy expectation value of the Hamiltonian,
⟨#|H |#⟩/⟨#|#⟩, with respect to the spin-parity eigenwave
function # = P Jπ

MK#AMD
12C (Z) projected from the AMD wave

function of 12C. Then the optimum AMD wave function
#AMD

12C (ZJ π
1 ), which approximately describes the intrinsic wave

function for the J π
1 state, is obtained. For higher J π

n states, the
variation is done for the component orthogonal to the lower
J π states. For each J (k)π(k)

n(k) , the optimum parameters Z(k) are
obtained. Here (k) is the label for the AMD configuration
for the J (k)π(k)

n(k) state. After the VAP procedure, final wave
functions for J π states are expressed by the superposition
of the spin-parity eigenwave functions projected from all the
intrinsic wave functions #AMD

12C (Z(k)) as

%
Jn,π
12C =

∑

K,k

c
J π

n
12C(K,k)

∣∣P ′Jπ
MK#AMD

12C (Z(k)), (7)

where the coefficients c
J π

n
12C(K,k) are determined by solving the

Hill-Wheeler equation, i.e., the diagonalization of the norm
and Hamiltonian matrices.

In the previous study of 12C, totally, 23 AMD con-
figurations #AMD

12C (Z(k)) (k = 1, . . . ,23) are obtained by
the energy variation for J (k)π(k)

n(k) = 0+
1 ,0+

2 ,0+
3 ,1+

1 ,2+
1 ,2+

2 ,2+
3 ,

. . . ,1−
1 ,2−

1 ,3−
1 , . . . , and they are adopted as basis wave

functions of the final wave functions of 12C. In the present
12C(AMD)+αGCM calculation, I adopt only three basis wave
functions to save the computational cost. In order to take into
account the ground and second 0+ states of 12C, I choose
two basis wave functions of J (k)π(k)

n(k) = 0+
1 ,0+

2 for k = 1,2. I

also adopt the basis wave function of J (k)π(k)
n(k) = 1−

1 for the
third basis wave function (k = 3) to reasonably reproduce the
energy levels of positive- and negative-parity states of 12C.
The intrinsic density of these three basis wave functions are
shown in Fig. 1. The ground state has the compact structure of
3α with a mixing of the p3/2-shell closure component, while
the 0+

2 and 1−
1 states show developed 3α cluster structures.

The energy levels of 12C obtained with the truncated model
space of three bases are shown in Fig. 2 compared with those
with full 23 basis wave functions and experimental ones. With
the truncation, I get reasonable reproduction of the energy
levels of many positive and negative parity states though the
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FIG. 1. (Color online) Density distribution of the intrinsic states
of (a) 12C(0+

1 ), (b) 12C(0+
2 ), and (c) 12C(1−

1 ) calculated with the
AMD+VAP [30]. The orientation of an intrinsic state is chosen so
as to satisfy ⟨x2⟩ ! ⟨y2⟩ ! ⟨z2⟩ and ⟨xy⟩ = ⟨yz⟩ = ⟨zx⟩ = 0. The
horizontal and vertical axes are set to the z and y axes, respectively.
Densities are integrated with respect to the x axis.

full 23 basis wave functions give better results, in particular,
for excited states. The reason for ∼2 MeV higher energies of
the 0+

2 and 1−
1 states with the three bases than those with the full

bases is that these states gain their energy by the superposition
of various configurations of the 3α cluster.

I also calculate the overlap N (16O(J π
n );12 C(0+

n ) + α; d) of
the 16O wave function obtained by the 12C(AMD)+αGCM
and the 12C(0+

n )+α wave function having a certain distance d,

#Jπ
12C(0+

n )+α
(d)

≡ n0P
Jπ
00 A

{
∑

k

c
0+

n
12C(K = 0,k)P ′0

00#
AMD
12C (−S/4; Z(k))

×#α(3S/4)
}

, (8)

N
(16O

(
J π

n

)
;12 C(0+

n ) + α; d
)

≡
∣∣〈%J π

n

AMD+αGCM

∣∣#Jπ
12C(0+

n )+α
(d)

〉∣∣2
. (9)
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FIG. 2. Energy spectra of 12C calculated with the AMD+VAP
using three basis AMD wave functions #AMD

12C (Z(k)) obtained by the
energy variation for J (k)π (k)

n(k) = 0+
1 ,0+

2 and 1−
1 with k = 1,2, and 3,

respectively, and that using the full 23 basis AMD wave functions.
The 0+

1 energy calculated with the 23 bases is adjusted to 0 and the
relative energies are plotted. The energies calculated using (1) one
basis (k = 1), (2) two bases (k = 1,2), (3) three bases (k = 1,2,3),
and (full) the full bases are shown. The excitation energies of the
experimental data are also shown.
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•  Stato fondamentale a simmetria triangolare 
•  Hoyle state “breathing mode”  
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FIG. 4. Difference Drnp between the rms radii of the neutron
and proton distributions as deduced from the antiprotonic atom
x-ray data, as a function of d ! !N 2 Z"#A. The proton dis-
tributions were obtained from electron scattering data [41] (Sn
nuclei) or from muonic atom data [38,42,43] (other nuclei). The
full line represents the linear relationship between d and Drnp
as obtained from a fit to the experimental data.

results clearly favor the peripheral neutron distribution in
the form of a neutron halo rather than a neutron skin. This
observation constrains the neutron distribution parame-
ters deduced from the analysis of the strong-interaction
level widths and shifts, leaving only the difference be-
tween neutron and proton diffuseness as a free parameter.
Under the assumption of an identical antiproton-neutron
and antiproton-proton scattering length, fair agreement
between radiochemical and x-ray data was obtained.
Reasonable agreement is also obtained between the Drnp
values deduced from the antiprotonic x-ray data and
those measured using various other methods. All these
findings indicate that the assumption of the simplest, i.e.,
the two-parameter Fermi, proton, and neutron peripheral
distributions are adequate, at least for the degree of
precision of the experiments described in this Letter.
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[28] A. Trzcińska et al., in Proceedings of the Sixth Biennial

Conference on Low-Energy Antiproton Physics, Venice,
2000 (to be published) (nucl-ex/0103008).

[29] S. Wycech et al., Phys. Rev. C 54, 1832 (1996).
[30] M. Wade and V. G. Ling, Phys. Rev. A 9, 1182 (1976).
[31] C. J. Batty, Nucl. Phys. A372, 433 (1981).
[32] C. J. Batty, E. Friedman, and A. Gal, Nucl. Phys. A592,

487 (1995).
[33] S. Wycech, in Proceedings of the Sixth Biennial Confer-

ence on Low-Energy Antiproton Physics, Venice, 2000 (to
be published) (nucl-th/0012053).

[34] L. Ray, Phys. Rev. C 19, 1855 (1979).
[35] H. J. Gils, H. Rebel, and E. Friedman, Phys. Rev. C 29,

1295 (1984).
[36] W. R. Gibbs and J. P. Dedonder, Phys. Rev. C 46, 1825

(1992).
[37] G. W. Hoffman et al., Phys. Rev. C 21, 1488 (1980).
[38] G. Fricke et al., At. Data Nucl. Data Tables 60, 177 (1995).
[39] E. Oset et al., Phys. Rep. 188, 79 (1990).
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Neutron skin ed energia di simmetria 
L’eccesso neutronico porta a distribuzioni di densita’ neutroniche e 
protoniche con raggi diversi e la presenza pertanto di una neutron 
skin 

Δr=<r2n>1/2-<r2p>1/2	

•  Raggio dei protoni da scattering di elettroni 
•  Raggio dei neutroni da scattering elastico di  
protone, scattering inelastico della risonanza  
gigante di dipolo e di spin-isospin, da dati da  
raggi X antiprotonici Neutron skin thickness
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Il valore della skin e’ strettamente correlato, ad 
esempio, con l’energia di simmetria della EoS, e 
costituisce un importante test per le varie 
parametrizzazioni usate per i calcoli di campo 
medio 

cf J. Roca Maza e GL Colo’	parametri nel termine di simmetria 



La presenza di una skin neutronica induce nuovi modi di eccitazione, come 
la Risonanza Pygmy di Dipolo  (PDR) 

Distribuzione  
della strength 
di dipolo in  
nuclei ricchi  
di neutroni 

5 10 15 E*(MeV) 

2+x3- 

-	

In termini macroscopici la PDR viene 
interpretata come dovuta ad 
oscillazioni della skin rispetto al 
core protonico-neutronico. 
La strength totale nella zona della 
PDR (in ogni caso una piccola frazione 
della EWSR) e’ pertanto legata alla  
ampiezza della skin e pertanto al  
parametro di asimmetria 

68Ni analysis of experiment at GSI (RISING-Setup)
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O. Wieland and A. Bracco, Prog. Part. Nucl. Phys. 66 (2011) 374
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J. Endres, IKP, Universität zu Köln, AG Zilges Structure of the Pygmy Dipole Resonance

O.Wieland et al., Phys. Rev. Lett. 102 (2009) 092502 
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A differenza della normale Risonanza Gigante di Dipolo, di natura 
praticamente isovettoriale, la Risonanza Pygmy ha una natura mista 
isoscalare/isovettoriale.  E’ percio’ eccitata sia in reazioni di tipo 
elettromagnetico, tipo γ,γ’, sia in reazioni inelastiche indotte da proiettili di 
tipo isoscalare, tipo α,α’ o 17O,17O’. 

L. Pellegri et al., PLB 738 (2014) 519 

α,α’γ	

γ,γ’	

Splitting della PDR in 124Sn? 
Comparing esperimento e teoria 

Lanza, Litvinova etal 



Reazioni con nuclei esotici 

•  fasci di nuclei esotici sono ovviamente fondamentali per lo studio  
delle proprieta’ spettroscopiche dei sistemi lontani dalla stabilita’ 
tramite reazioni in cinematica inversa (reazioni tipo (p,d) o simili) 

ma 

•  altrettanto interessanti gli aspetti relativi ai meccanismi di reazione 
che presentano caratteristiche spesso diverse da quelle associate con  
sistemi stabili  



Alcune tematiche interessanti 

Reazioni di break-up di nuclei debolmente legati 

•  meccanismo di reazione 
•  modelli per la trattazione degli stati del continuo 
•  effetti del break-up sulle  
reazioni di scattering elestico  
e di fusione sopra e sotto la  
barriera (aumento o diminuzione?) 

•  breakup elastico e con eccitazione del core 
•  break-up di nuclei con aloni con due neutroni: processo sequenziale  
  o simultaneo? 

6He+64Zn 
4He+64Zn 

Di Pietro, 
Scuderi etal 



Scattering elastico: Nuclei “normali” vs nuclei “halo “ 

La distribuzione angolare elastica evidenzia un assorbimento 
a lungo raggio.  Cio’ significa che, grazie alla distribuzione 
estesa dell’alone, I due nuclei interagiscono tramite una 
interazione NUCLEARE a grande distanze (> 15 fm)  

Alessia Di Pietro etal 



Reazioni di trasferimento per popolare e evidenziare stati collettivi 
di pairing ad alta energia (Giant Pairing Vibration) 

Prime evidenze  
di stati 0+ ad alta  
energia (GPV?) 
(Capuzzello etal) 
12C(18O,16O)14C 
Magnex, LNS 

L’utilizzo di proiettili debolmente  
legati puo’ favorire, dal punto di vista  
del Q-valore ottimale, il trasferimento  
a stati ad alta energia di eccitazione,  
nella zona prevista per la GPV 
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Figure 5. The figure refers to the case of two-neutron stripping reaction on 208Pb with di↵erent
projectles. In the right frame the green area shows the part of the nuclear chart corresponding
tp the projectiles that, because of favorable Q-value, are expected to lead to a population of
GPV larger than the ground state. In the left frame the green area shows the case in which the
condition is reduced to having a population of the GPV at least one tenth of the ground state.
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Synthesis of neutron-rich  heavy and super-heavy elements: 
isospin  dependence of compound nucleus formation and decay at high energy 

•  Novel information can be obtained by the study of the fission cross section 
 across long isotopic chains of compound nuclei, extending from the  
 neutron-rich to neutron-poor side 

•  Fragment production at higher energies 
  Dynamical component: enhanced by a factor 1.5-2 in the neutron rich especially for  
   heavier IMF, while the statistical component is almost equal in both system 

CHIMERA collaboration, PRC 91, 014610, 2015 
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