

Soft Optoelectronic Interfaces to the Brain

- 1) Soft, Conformal Optoelectronic Systems
- 2) 3D Mesoscale Electronic Networks
- 3) Bioresorbable Electronics & Sensors

John A. Rogers – Northwestern University

Departments of Materials Science and Engineering, Electrical and Computer Engineering, Chemistry, Biomedical Engineering, Mechanical Engineering, Feinberg School of Medicine – Neurological Surgery

Louis Simpson and Kimberly Querrey Professor

Director, Center for Biointegrated Electronics

Fundamental Research into the Function of the Brain

"New directions in science are launched by new tools much more often than by new concepts." – *F. Dyson*

"The Rosetta Stone for the brain will require a new generation of tools that give us the vocabulary, the syntax, and the grammar of the brain." – *T. Insel*

Electronics for the Brain

Challenge ??

Current ?!

IEEE Intl. Symp. Ckts & *Sys* (2008). *J Neurophysiol* **111**, 1132 (2014).

Future – Soft, Shape Conformal, Biocompatible

Diagnostics for Brain Surgery

J. Neural Eng. 5, 75 (2008)

Candidate Semiconductors for Bio-Integrated Electronics

Polymers:

Solution processing Low performance

Small molecules: Performance similar to a-Si Vacuum dep.

Single crystals:

Study of intrinsic charge transport Fragile, challenging integration

Carbon nanotubes:

High mobility, 'robust' High temp. growth, electr. heterogeneity

graphene:

High mobility High temp. growth Semi-metallic

Northwestern

Materials Challenges

Mechanics of Silicon NanoMembranes

Stretchable Silicon

Science 311, 208 (2006); PNAS 104, 15607 (2007).

High-Density Flexible Electronics for Active µECoG

High-Density Flexible Electronics for Active µECoG

Multiplexer Buffer

Features 360 Electrodes 20 × 18 500 μm spacing 10 x 9mm 39 wires

Nature Neurosci. 14, 1599 (2011).

Flexible, Foldable Electronics for Active µECoG

Nature Neurosci. 14, 1599 (2011).

Recording From the Interhemispheric Fissure

Nature Neurosci. 14, 1599 (2011).

High-Density Flexible Electronics for Active µECoG

High Resolution Mapping of a Seizure Event

Higher-Density Flexible Electronics for Auditory Cortex

J. Neurophys. 112, 1566 (2014).

Flexible Bio-Sensing Electronics with Thermal SiO₂ Encapsulation and Chronic Stability

Northwestern

396-ch chronic bio-mapping electronics

- 792 Si nano-membrane transistors
- □ 58 wires, 500 µm × 500 µm spatial resolution
- **Encapsulated** with 900 nm thermal SiO₂
- Capacitive sensing design

Nature Biomed. Eng. 1(3), 0038, DOI: 10.1038/s41551-017-0038 (2017).

Chronic Use in NHPs

unpublished

Undercut Release of InGaN 'Micro' LEDs

PNAS **108**, 10072 (2011).

Size Scaling in AlGaN Devices – Thermal, Optical

Max. Size : $1 \times 1 \text{ mm}^2$ Min. Size : $25 \times 25 \mu \text{m}^2$

Small 8, 1643 (2012).

InGaN μ-ILEDs and Lithographic Interconnection Schemes

SQI Simpson Querrey Institute BioNanotechnology

PNAS 108, 10072 (2011).

Optoelectronics for the Brain -- Optogenetics

Future – Wireless, Thin, Flexible, Fully Implantable

Multifunctional, 'Cellular-Scale' Optoelectronics

'Injectable' Optoelectronics

Physics of Heat Flow in the Living Brain

Fully Implantable Wireless Optogenetics

Nature Biotechn. 33, 1280 (2015).

Operation with Multiple Animals in a Place Preference Box

unpublished

Wireless Optogenetics With Freely Moving Mice

Maps of Location in a Y-Maze

Multi-channel, Multi-Wavelength Wireless Operation

Northwestern

PNAS, in press

Fully Implantable Wireless Optogenetics

Sciatic Nerve

Spinal Cord

Nature Biotechn. 33, 1280 (2015).

Bio-Integrated Electronics

Brain

Nature Neurosci. 14, 1599 (2011).

Heart

Nature Comm. 10.1038/ncomms4329 (2014).

3D Mesoscale Network Structures in Biology

Heart -- Vasculature

Northwestern

MediVisuals

1 cm

Options in 3D Micro/Nanofab

MRS Bull (2012)

2 Photon Lithography

Direct Write Printing

(2014)

3D Photopatterning

Assembly of a 3D Mesoscale Conical Helix

Assembly of a 3D Mesoscale Conical Helix

Assembly of a 3D Mesoscale Conical Helix

Device Grade Silicon

Assembly of 3D Helices With Chirality Control

Right and Left Handed Coils

Anti Helmholtz Coils

Northwestern

Assembly of 3D, Nested Toroids and Baskets

Assembly of 3D, Nested Toroids and Baskets

3D Mesoscale Network in Silicon

Science **347**, 154 (2015).

400 µm

3D Mesoscale Network in Silicon

3D Nanoarchitectures

Science 347, 154 (2015).

5 μm

Advanced 3D Architectures – Membranes and Ribbons

PNAS 112, 11757 (2015).

Silicon 'Kirigami'

PNAS 112, 11757 (2015).

Control Parameters:

2D layouts; bonding configurations

Thickness profiles, cuts

Multilayer configurations

Non-uniform distributions of pre-strain

Residual stresses

Dissolvable components

Loading path trajectory

What is the range of accessible 3D topologies? Can we develop inverse design algorithms? What are the fundamental limits in dimensional scaling?

Is it possible to assemble arbitrary 3D bio-integrated electronic systems, by design?

3D Silicon Scaffolds for Cells

Definition

Transient Electronics – electronic systems that fully or partly dissolve, resorb or otherwise physically disappear at programmed rates or at triggered times

Science 337, 1640 (2012).

Potential Applications

- 1) Zero/Reduced E-Waste Consumer Electronics
- 2) Implantable Therapeutics / Diagnostics
- 3) Environmental Monitors / Sensors
- 4) ...

Science 337, 1640 (2012).

Materials Challenges

Dissolution of Silicon at Physiological pH, Temp.

Northwestern

Some Transient Electronic Materials

<u>Semic.</u>	Dielectr.	Interconn.	<u>Substr.</u>
ZnO	SiOx	Mg	silk
IGZO	SiN	Zn	PLGA
poly-Si	MgÔ	W	PLA
a-Si	SÕG	Мо	PCL
np-Si		Fe	POC
Ge		pastes	collagen
SiGe		-	polyanhydride

Adv. Mater. 26, 7637 (2014). Adv. Mater. 26, 7371 (2014). Adv. Mater. 26, 3905 (2014). ACS Nano 8, 5843 (2014). APL 105, 013506 (2014) Adv. Func. Mater. 24, 4427 (2014).

Adv. Health. Mater. 3, 515 (2014).
Small 9, 3398 (2013).
Adv. Mater. 26, 3905 (2014).
Adv. Func. Mater. 24, 645 (2014).
Adv. Func. Mater. 23, 4087 (2013).
Adv. Mater. 25, 3526 (2013).

Transient Electronics – Test Platform

Si, SiO₂, Mg, MgO and silk

Actively Multiplexed Array

Nature Mater. 15, 782 (2016).

Epileptic Spiral Activity

uECoG channels (uV)

<u>Active Electrode on a Rat Brain</u>

Spatial-temporal characteristics

Epileptic Activity

Soft, Biocompatible Optoelectronic Interfaces to the Brain

- 1) Soft, Conformal Optoelectronic Systems
- 2) 3D Mesoscale Electronic Networks
- 3) Bioresorbable Electronics & Sensors

Senior Collaborators

Prof. Y. Huang (NU) – mechanics Prof. P. Ferreira (UIUC) – manuf. Prof. X. Li (UIUC) – MOCVD Prof. R. Nuzzo (UIUC) – surf. chem.

Prof. M. Bruchas (WU) – optogen Prof. B. Litt (U Penn) – epilepsy Prof. J. Viventi (Duke) – BMI Dr. R. Murphy (WU) -- TBI

lorthwestern

Rogers Research Group

