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How can I be sure 1t 1s working?



Examples of certification protocols

Source



What are the drawbacks?

Inefficient
procedures

|

The number of required
measurements scales exponentially
with the size of the system

Full control over

the apparatus

|

We need to trust that the
apparatus is performing the right
measurements




Can we solve these i1ssues?
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Device Independent Protocols
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Device Independent protocols can be verified, relying
solely on the input/output statistics.
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Device Independent protocols can be verified, relying
solely on the input/output statistics.
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Causal Inference

We can detect non-classical correlations

Device-Independently, exploiting causal inference.
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J. Pearl, Cambridge University Press, II edition (2009)
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Causal Inference

We can detect non-classical correlations

Device-Independently, exploiting causal inference.
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Can we consider different scenarios?
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Instrumental process

Instrumental Inequality
0,1,2

with (AB)y = Yap=01(—1D**Pp(a, b|x)

p(a,b|x)

I. Agresti et al., Communications Physics, 3, 110 (2020).



Instrumental process

Instrumental Inequality
0,1,2

with (AB)y = Yap=01(—1D**Pp(a,b|x)

7<1+2V2 = 3.82

R. Chaves, G. Carvacho, I. Agresti, V. Di Giulio, L. Aolita, S. Giacomini, F. Sciarrino,
Nature Physics 14, 291-296 (2018)



Experimental Implementation
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Experimental Implementation
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Experimental Implementation
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Experimental Implementation
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Experimental Implementation
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Experimental Implementation
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What can we do with 1t?

We can exploit the instrumental inequalities
to detect non-classical correlations and
certify intrinsic randomness

Randomness Quantifier e—
Hnin(x) = —log,( ) P(e) maxy,,P(a, ble, x))
e

We want to obtain a lower bound min(H,,;,(x))=f,(7) for the
min-entropy, performing the optimization over all quantum
probabilities, such that

P(a,b|x,y = a) — Tr(]\/[glc]\/[lg' pAB) and z Cabxp(a,bl,X') =1

a,b,x
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What can we do with 1t?

We can exploit the instrumental inequalities
to detect non-classical correlations and
certify intrinsic randomness

Randomness Quantifier e—
Hnin(x) = —log,( ) P(e) maxy,,P(a, ble, x))
e

We want to obtain a lower bound min(H,,;,(x))=f,(7) for the
min-entropy, performing the optimization over all quantum
probabilities, such that

NOT FEASIBLE
P(a,b|x,y = a) ST (MIME pag) and z CapxP(a,b|x) =7

a,b,x
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Randomness lower bound

min (Hymin (X)) =£,(7)

We recast the optimization
as a SDP problem

P(a,blx,y =a) € Q,

NPA hierarchy

z CapxP(a,blx) =7

a,b,x

M. Navascués, S. Pironio, A. Acin, Phys. Rev. Lett. 98, 010401 (2007) 2



Min-entropy per round
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Min-entropy per round
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e Instrumental violation

We resort to the Entropy Accumulation theorem to evaluate how the
min-entropy accumulates over the runs.
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In our experiment
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Instrumental process

In this case the quantum and classical causal
predictions coincide

|

NO QUANTUM VIOLATION IS POSSIBLE

(&)—(®

0,1 0,1



Instrumental process

In this case the quantum and classical causal
predictions coincide

0,1 l

NO QUANTUM VIOLATION IS POSSIBLE

W) — (B

We can still certify the presence of non-
0,1 0,1 classical correlations through the amount of
influence between A and B



Average

(a)—(B)

Causal effect

We can quantify the amount of causal
influence between A and B, in this way:

ACE = max |p(b|do(a)) —p(bldo(a))|

INTERVENTION



Average Causal effect

We can quantify the amount of causal
influence between A and B, in this way:
(a)—(B)
? ACE = max |p(b|do(a)) —p(bldo(a))|
a,a’, ////
INTERVENTION

LOWER BOUNDS on the ACE

ACE =2 p(0,010) + p(1,1]0) + p(0,1|1) + p(1,1|1) — 2

qACE > z(p(O,le) +p(L1lx))—¢—1 @
0,1 —

If qACE < ACE, we have a quantum violation!



Experimental apparatus
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Results
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Quantum network prototypes
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I. Agresti et al., PRX Quantum 2, 020346 (2021).

Parallel scenario




Self-testing protocol

It allows to evaluate the a lower bound on the fidelity of the generated state
with respect to a target state (in our case the tensor product of 2-qubit
maximally entangled ones)

target state |1/J> ® |l/)>
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target state |lp> ® |l/)>

F(p, XD = V@lpld)

_ 101) - |10)
R

)

49



Self-testing protocol

It allows to evaluate the a lower bound on the fidelity of the generated state
with respect to a target state (in our case the tensor product of 2-qubit
maximally entangled ones)

target state |lp> ® |l/)>

_ 101) - |10)
R

)

F(p, XD = V@lpld)

In order to properly define the fidelity, we would have to assume
the dimension of the state. To avoid this assumption, we resort to
the so-called SWAP operator.



swap operator

The swap operator allows to express the fidelity in terms of
correlations obtained by the parties, performing measurements in two
bases.

F(pr h/))(l/)l) — Zcxx’x”yy’yutr(pABAxAx’Axll ByBy’ yII)
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‘4 > . @
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AO )Al BO;Bl
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M. Navascués, S. Pironio, A. Acin, Phys. Rev. Lett. 98, 010401 (2007)

Lower bound on the fidelity

At this point we want to minimize the square fidelity with pgygy
over the set of quantum correlations:

Flp, VYD) = Wlpl)  s.t. p@bixy e g

Since this problem is not feasible, we relax this assumption to a superset of
the quantum correlations one.

We recast the optimization :
as a SDP problem

P(a,blx,y) € Q3

NPA hierarchy
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Fidelity

Numerical results
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Experimental implementation

Our goal is to self-test a state of 4 qubits generated by two quantum networks
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Probability
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Probability

Probability
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Conclusions

It is possible to design device-independent protocols exploiting different
causal structures than the standard Bell-like scenario.
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adversarial attack (EAT theorem).
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We presented three device-independent protocols, exploiting the instrumental
causal structure and causal structures involving two quantum state sources.

Exploiting the quantum violation of the instrumental inequality we designed
and implemented a generator of certified random bits, secure against any

adversarial attack (EAT theorem).

When no quantum inequality violation is possible, non-classical correlations
are still certifiable, through the average causal effect.
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Conclusions

It is possible to design device-independent protocols exploiting different
causal structures than the standard Bell-like scenario.

We presented three device-independent protocols, exploiting the instrumental
causal structure and causal structures involving two quantum state sources.

Exploiting the quantum violation of the instrumental inequality we designed
and implemented a generator of certified random bits, secure against any
adversarial attack (EAT theorem).

When no quantum inequality violation is possible, non-classical correlations
are still certifiable, through the average causal effect.

We developed and implemented a self-testing protocol, based on the swap
operator, to certify a lower bound on the fidelity between an unknown state
generated by a quantum network and a target state. We obtained non trivial
lower bounds on the fidelity and entanglement dimension of the generated
states with the targets, with no assumptions on the experimental apparatu;.



