Applied Physics Research @ TIFPA-INFN

G. Battistoni

Trento Institute for Fundamental Physics and Applications

Trento Institute for Fundamental Physics and Applications

What is TIFPA

TIFPA (Trento Insititute for Fundamental Physics and Applications) is an INFN **collaborative center for translational physical research** Partners are INFN, UNITN, FBK, and APSS. Founded in 2013.

Scientific excellence Synergism Infrastructures Technological transfer

Both Fundamental and Applied research are present

Research areas @ TIFPA

High Energy Physics			Astroparticle Physics in Space Missions
]	
Nuclear Physics		G	Gravitational Waves both space and ground based
Anti-matter Physics			
			Interdisciplinary and technological research
	Biophysics		

Experimental and Theroretical activitity on almost all of these items

per i Servizi Sanitari

Applied and Interdisciplinary Physics Research

- Sensor development
- Detector development
- Technology for Space Missions and Gravitational Wave research
- Medical Physics
- Radiation Physics and Nuclear Physics Applied to Medicine
- Space radioprotection
- Quantum Technologies

Nuclear Fragmentation Measurements proton/ion beam Treatment planning *New radiotherapy modalities: FLASH therapy* Radiobiological modeling Radiation induced toxicities modeling New ion beams characterization Micro/Nanodosimetry Monte Carlo Radiation Transport and Track structure Radiation Chemistry **Bioeffect based detectors** Radiosensitization

Experimental room @ APSS ProtonTherapy - Trento

Trento Institute for Fundamental Physics and Applications

X-Ray and Bio-lab @ TIFPA

X-ray 195 kV shielded irradiator

System for small animal anaesthetization. Optical microscope Laminar flow biological hood Centrifugator Incubator Distribution pipe-lines for CO₂ and N₂

Linear

44±22

РТ

Lin-exp

 16 ± 7

Lin-plat

 14 ± 6 0 ± 1

Secondary Cancer risk modeling

Lin-exp Linear

Dosimetric studies : strong reduction of Excess ontralateral Lung Risk (EAR) in p vs 3±1 1 ± 1 0 ± 1 X₋-rays plans according to

Biophysical modeling: New **MKM** based model for Mutation Induction **RBE** (RBE_M) of particles versus X-rays in analogy to the standard RBE for clonogenic survival (RBE_s)

Attili et al. PTCOG 2021, in prep for Rad. Res. 2021.

Lin-plat

 25 ± 3

Cartechini et al. Radiot. Oncol.2020

Generalized Equivalent Uniform Dose (gEUD) and Normal Tissue Complication Probability (NTCP)

volume effect parameter
(organ specific)

$$gEUD[Gy] = \left(\sum_{i=1}^{N} p_i D_i^a\right)^{\frac{1}{a}} = \begin{cases} D_{min} & a \to -\infty \\ D_{mean} & a = 1 \\ D_{max} & a \to +\infty \end{cases}$$
Large volume effect
bins of DVH

Lyman-Kutcher-Burman (LKB) model

(1989):
NTCP(u) =
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt$$

Important index for ranking treatment plans (clinical acceptability)

$$u = \frac{gEUD - TD_{50}}{m \cdot TD_{50}} \quad \text{whole organ dose for} \\ \text{NTCP = 50\%} \\ \text{curve slope at } TD_{50}$$

NTCP based optimization

Including **Volume effects** in inverse planning: Beyond Dose based optimization First implemenation of gEUD based optimization in Treatment planning for partcle beams

Istitute Nazionale di Fisica Nucleare

Azienda Provinciale

per i Servizi Sanitara Provincia Autonoma di Trento

FONDAZIONE

BRUNO KESSLER

TIFPA Trento Institute for Fundamental Physics and Applications

Unraveling the FLASH radiotherapy

 Multiscale Mechanistic studies for understanding the FLASH effect and its feasibility with different radiation type / irradiation conditions

Boscolo et al. Radiother Oncol 2021

Microdosimetry as a bridge between physics and biology: The MICROBE-IT project

MICROdosimetry-based Biological Effectiveness assessment in Ion Therapy

- A) Characterization of Radiation Field using 6 different detectors:
- Miniature and nano-dosimetric tissue-equivalent proportional counters (mini- and nano-TEPC): gas-based detectors.
- \circ Silicon telescope: ΔE (microdosimeter) and an E stage (particle identification).
- o Micro Plus probe: silicon detector
- Silicon carbide (SiC): semiconductor based
- **HDM** (hybrid detector for microdosimetry): 2-stage microdosimeter composed of a TEPC followed by Low Gain Avalanche Detectors (LGADs).

B) Development of a stochastic microdosimetry-based kinetic model (GSM²) for RBE to improve treatment planning accuracy and effectiveness, as well as to decrease toxicity in the normal tissue.

C. La Tessa

4D phantom for dose measurement of moving targets in hadrontherapy

project cofunded by CARITRO

B. Di Ruzza et al

Dose sensor located on a movable plane that will reproduce the x(t), y(t) and z(t) patient breath movement simulated or real (stored using an infrared camera).

2D (time+X) phantom prototype: delivered and tested in the Trento APSS Gantry on January 2020

Trento Institute for Fundamental Physics and Applications

03

. RBE and NTCP/TCP model to account for biological effects and tumor control

Trento Institute for Fundamental Physics and Applications

SENSOR Development

Beyond its own cleanroom, TIFPA can take advantage from FBK facilities (cleanrooms and characterization labs)

ARCADIA: CMOS Fully Depleted MAPS at INFN

- Design and fabrication platform for large-area Fully-Depleted CMOS sensors, targeting space, medical and future HEP infrastructures (thin sensors) and X-ray detectors (thicker sensors)
- INFN CSNV call project involving the sections of Bologna, Milano, Padova, Pavia, Perugia, TIFPA and Torino

Medical

- Low power (≤ 40 mW/cm²)
- Medium rate \approx 10 MHz 100 MHz/cm²
- · Ultra low material budget (low energy)
- Very large area (≥ 16 cm²)
- 3-side buttable design
- Low to medium rad-tolerance ≈ 10 kGy

e⁺e⁻

- Low power ($\leq 40 \text{ mW/cm}^2$)
- Medium rate ≈ <u>10 MHz 100 MHz / cm²</u>
- Very low material budget
- Large area (≥ 6 cm²)
- 3-side buttable design
- Low to medium rad-tolerance ≈ 10 kGy

Space

- Ultra low power (≤ 10 mW/cm²)
- Very low rate ≈ kHz/cm²
- Low material budget
- Large area ($\geq 6 \text{ cm}^2$)
- 3-side buttable
- Low rad-tolerance ≈ 1 kGy

ARCADIA project: current status

- Process developed in collaboration between INFN and LFoundry: Italian patent granted, international patent pending
- First run, **12 wafers** delivered in May 2021:
 - 3 values of fully depleted active thickness: 50μm 100μm 200μm
 - Main demonstrator with 512 x 512 pixels (25μm pitch)
 - **Test devices** for pixel sensors, integrated strips and small pixel arrays
- Current status of test:
 - Sensors: full depletion verified on test structures
 - Operation of digital readout circuitry verified
 - Analog front-end under test
- Second design completed in July 2021, third design foreseen in 2022
- Expanding network: synergy with other collaborations/institutions (PSI, ALICE, RD-FCC, AIDAinnova ...)

ReDSoX, XRO Silicon Drift Detector

RedSox2 2015

Sesame

2018

Redsox3 2016

- Test e caratterizzazione eletrica di varie lotti di Silicon Drift Sensors
- Ispezione ottica dei sensori
- Classificazione dei difetti e Studio di resa
- Definizione dei parametri di processo e del materiale attraverso la caratterizzazione delle strutture di test

NINO KESSI FR

Partecipazione al design

Trento Institute for Fundamental Physics and Applications

per i Servizi Sanitara

Application for Synchrotron Light Experiments

Sesame

Trento Institute for Fundamental Physics and Applications

Applications for astroparticle and space

eXTP (enhanced X-ray Timing and Polarimetry)
 Study of matter under extreme conditions of gravity,
 density and magnetism. For the first time: simultaneous,
 high-throughput spectral, timing and polarimetry observations.
 640 SDD LAD 7x12 cm, 24 SDD WFM 6x7 cm
 LAD = Large Area Detector WFM = Wide Field Monitor

Hermes

dedicated to the realization of a a cluster of nano-satellites for gamma astrophysics

Flares

Applicazione di SDD come photodetector per il cristallo scintillante CdWO4 per i studi di "rare nuclear decays, such as the possible neutrinoless double beta decay".

Example of Detector Development

FIRE:

Flexible organing Ionizing Radiation dEtectors

Collaboration Unibo – TIFPA – LNL-UniPD – Roma3-CNR – UniNA+CNR

Flexible organic detectors for real time dose monitoring.

Monitoring of the dose released on healthy tissues during radiotherapy.

Organic detectors: low cost, low voltage, no clean rooms...

Detector Structure

The case of Indirect Detectors

- Preliminary tests on indirect sensors were performed at the APSS proton facility.
- Polysiloxane scintillators were couplet to organic photodetectors.
- The detector exhibits a fast response.
- More complete systematics are planned for the full response characterization.

Developments in Quantum Technologies

https://quantumtrento.eu/

undamental Physics

30/11/2020 31

Q@TN is a joint laboratory of University of Trento, Bruno Kessler Foundation, and INFN, aimed at coordinating their on-going activities and to start new ones in the field of Quantum Science and Technologies

- Quantum computing
- Single photon detectors
- RF technology
- Photonic integrated circuits
- Ultracold atoms

....

Silicon Nitride nanomembrane sensors embedded in a Fabry-Perot cavity (Membrane-In-the-Middle)

Journal of Applied Physics 130, 064503 (2021); <u>https://doi.org/10.1063/5.0055954</u>

Functionalization by TiN films for RF/Optical transduction

Toward RF/Optical transduction of weak signals exploiting the electro-optomechanical interaction.

Functionalized Si_3N_4 nanomembranes can be seen as ultrasensitive force detector embedded in a quantum-limited measurement set-up. This configuration opens new prospective in exploiting the Quantum Technologies for biosensing at the Nanoscale with Scanning Force Microscopy, Photo-Acoustic-Detection, as well as 3D imaging of nanoobjects at the atomic scale with NanoMRI.

Per maggiori dettagli:

TIFPA Activity Reports

http://www.tifpa.infn.it/contacts/downloads/

Trento Institute for Fundamental Physics and Applications

Grazie per l'attenzione

Contributi di:

E. Bellinzona, G. Dalla Betta, B. Di Ruzza, C. La Tessa, L. Pancheri, A. Quaranta, I. Rashevskaya, M. Schwarz, E. Scifoni, E. Serra and F. Tommasino

