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 Higher-order network are characterising the 
interaction between two ore more nodes and   

 are  formed by nodes, links, triangles, 
tetrahedra etc.

d=2 simplicial complex     d=3 simplicial complex

Higher-order networks



Higher-order network data
Brain data 

Protein interactions

Collaboration networks

Face-to-face interactions



Generalized network structures

Going beyond the framework of simple networks  
  

is of fundamental importance 

for understanding the relation between structure and 

 dynamics in complex systems  
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A simplex of dimension d is a set of d+1  nodes 

-it indicates the interactions between the nodes 

-it admits a topological and geometrical interpretation  

0-simplex     1-simplex          2-simplex      3-simplex   

Simplices

α = [i0, i1, i2, …id]



A face of a d-dimensional simplex 
is  a 𝛿-dimensional simplex (with 𝛿<d)  

formed by a non-empty subset of its nodes 

-
 3-simplex   

Faces of a simplex

Faces

4 0-simplices           6  1-simplices                 4   2-simplices



Simplicial complex
    A simplicial complex     is a set of simplices 

closed under the inclusion of the faces of every 
simplex 
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𝒦
If a simplex 𝛼 belongs  
to the simplicial complex  
then every face of  𝛼 
must also belong to  𝒦

𝒦

𝒦 = {[1], [2], [3], [4], [5], [6],
[1,2], [1,3], [1,4], [1,5], [2,3],
[3,4], [3,5], [3,6], [5,6],
[1,2,3], [1,3,4], [1,3,5], [3,5,6]}



Betti numbers

β0 = 1
β1 = 2
β2 = 1

β0 = 1
β1 = 0
β2 = 1

β0 = 1
β1 = 1
β2 = 0

β0 = 1
β1 = 0
β2 = 0

Point                     Circle                        Sphere                                 Torus

Euler characteristic 

χ = ∑
n

(−1)nβn



Betti number 1 

Fungi network from Sang Hoon Lee, et. al. Jour. Compl. Net. (2016) 



Topological signals
Simplicial complexes and networks can sustain dynamical variables (signals)  

not only defined on nodes but also defined on higher order simplices 
these signals are called topological signals
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Topological signals
• Citations in a collaboration network


• Speed of wind at given locations


• Currents at given locations in the ocean


• Fluxes in biological transportation networks


• Synaptic signal


• Edge signals in the brain
Topological signals  

are co-chains or vector fields 



Higher-order structure and dynamics
Higher-order 

networks
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Simplicial complex models

Emergent Geometry 
Network Geometry with Flavor (NGF) 

[Bianconi Rahmede ,2016 & 2017]

Maximum entropy model 
Configuration model  

of simplicial complexes 
[Courtney Bianconi 2016]



Kuramoto model



Synchronization is a 
fundamental dynamical process

• N
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Synchronization  
pioners

Christiaan Huygens 1665

Yoshiki Kuramoto 1974



Kuramoto model on a 
network
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Kuramoto model on a 
network

·θi = ωi + σ
N

∑
j=1

aij sin (θj − θi)1
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θ1

ω ∼ 𝒩(Ω,1)

Given a network of N nodes  
defined by an adjacency matrix a 

we assign to each node a phase obeying 

where the internal frequencies of the nodes  
are drawn randomly from 

and  the coupling constant is 𝜎



Order parameter for 
synchronization

• We consider the global order parameter 


• The role of R is to indicate the synchronisation transition


R =
1
N

N

∑
i=1

e θi𝕚

R ≃ 0 for σ < σc

R finite for σ ≥ σc



Kuramoto Model
In an infinite fully connected network  

we have 
R

σσc

1

0

Synchronized 
phase
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Network topology 
and  

Higher-order Laplacians



Orientation of the simplex
Each simplex 

  

has an orientation 

Therefore we have

α = [i0, i1, …, in] .

[i, j] = − [ j, i]

1 2

3

1 2

[i, j, k] = [ j, k, i] = [k, i, j] = − [ j, i, k] = − [k, j, i] = − [i, k, j]



Oriented simplicial complex 
and n-chains

a = [1,3] − [2,3] + [2,4]

Example of 1-chain

a ∈ 𝒞1



Boundary operator

Therefore we have

∂n[i0, i1…, in] =
n

∑
p=0

(−1)p[i0, i1, …, ip−1, ip+1, …, in] .

The  boundary map        is a linear operator  

whose action is determined by the action on each n-simplex of the simplicial complex

∂n

∂n : 𝒞n → 𝒞n−1

∂2[1,2,3] = [2,3] − [1,3] + [1,2] .∂1[1,2] = [2] − [1] .

1 2 1 2

3



The boundary of a 
boundary is null

The boundary operator has the property


Which is usually indicated by saying that the boundary of the 
boundary is null.


This property follows directly from the definition of the 
boundary, as an example we have


 ∂1∂2[i, j, k] = ∂1([ j, k] − [i, k] + [i, j]) = − [ j] + [k] + [i] − [k] − [i] + [ j] = 0.

∂n∂n+1 = 0 ∀n ≥ 1



Incidence matrices

B[1] =

[1,2] [1,3] [2,3] [3,4]
[1] −1 −1 0 0
[2] 1 0 −1 0
[3] 0 1 1 −1
[4] 0 0 0 1

,

B[2] =

[1,2,3]
[1,2] 1
[1,3] −1
[2,3] 1
[3,4] 0

.

∂n[i0, i1…, in] =
n

∑
p=0

(−1)p[i0, i1, …, ip−1, ip+1, …, in] .

Given a basis for the n simplices and n-1 simplices  
the n-boundary operator  

      is captured by the incidence matrix               B[n]



Boundary of the boundary 
is null

In terms of the incidence matrices the relation 

  

Can be expressed as 

B[n]B[n+1] = 0 ∀n ≥ 1 B⊤
[n+1]B

⊤
[n] = 0 ∀n ≥ 1

∂n∂n+1 = 0 ∀n ≥ 1



Graph Laplacian in terms of 
the incidence matrix

The graph Laplacian of elements 


Can be expressed in terms of the 1-incidence matrix


as 


(L[0])ij
= δijki − aij

L[0] = B[1]B⊤
[1] .



Higher-order Laplacian
The higher order Laplacians can be defined in terms of the incidence 

matrices as 


The dimension of the                is the n-Betti number  

The higher order Laplacian can be decomposed as


with 


L[n] = Ldown
[n] + Lup

[n],

Ldown
[n] = B⊤

[n]B[n],

Lup
[n] = B[n+1]B⊤

[n+1] .

L[n] = B⊤
[n]B[n] + B[n+1]B⊤

[n+1] .

ker(L[n]) βn



Hodge decomposition
The Hodge decomposition can be summarised as


This means that                         are commuting and can be diagonalised 
simultaneously. In this basis these matrices have the block structure


ℝDn = img(B⊤
[n]) ⊕ ker(L[n]) ⊕ img(B[n+1])

L[n], Lup
[n], Ldown

[n]

U−1L[n]U =
Ddown

[n] 0 0
0 0 0
0 0 Dup

[n]

U−1Ldown
[n] U =

Ddown
[n] 0 0
0 0 0
0 0 0

U−1Lup
[n]U =

0 0 0
0 0 0
0 0 Dup

[n]

• Therefore an eigenvector in the ker of            is also in the ker of both  

• An eigenvector corresponding to an non-zero eigenvalue of    
is either a non-zero eigenvector of        or a non-zero eigenvector of 

L[n] Lup
[n], Ldown

[n]

L[n]
Ldown

[n]Lup
[n]



Explosive higher-order 
Kuramoto model  

on simplicial complexes

A. P. Millán, J. J. Torres,  and G.Bianconi,  
Physical Review Letters, 124, 218301 (2020) 



Topological signals
Simplicial complexes can sustain dynamical variables (signals)  

not only defined on nodes but also defined on higher order simplices 
these signals are called topological signals



Standard Kuramoto model in 
terms of incidence matrices

The standard Kuramoto model, can be expressed in terms 


of the incidence matrix  B[1] as


where we have defined the vectors


and we use the notation              


to indicates the column vector where the sine function is taken element wise


 

·θ = ω − σB[1] sin B⊤
[1]θ

θ = (θ1, θ2, …, θi…)⊤

ω = (ω1, ω2, …, ωi…)⊤

sin x



Topological signals

We associate to each  

n-dimensional simplex 𝛼 a phase 𝝓𝛼  

For instance for n=1 we might associate to each link a oscillating flux


The vector of phases is indicated by 

ϕ = (…, ϕα…)⊤



Higher-order Kuramoto 
model

We propose to study the higher-order Kuramoto model


defined as 


where is the vector of phases associated to n-simplices


and the topological signals ad their  internal frequencies are indicated by 


with the internal frequencies

·ϕ = ω̂ − σB[n+1] sin B⊤
[n+1]ϕ − σB⊤

[n] sin B[n]ϕ,

ω̂α ∼ 𝒩(Ω,1)

ω̂ = (…, ω̂α…)⊤

ϕ = (…, θα…)⊤



Topologically induced  
many-body  interactions

·ϕ[12] = ω̂[12] − σ sin(ϕ[23] − ϕ[13] + ϕ[12]) − σ [sin(ϕ[12] − ϕ[23]) + sin(ϕ[13] + ϕ[12])],
·ϕ[13] = ω̂[13] + σ sin(ϕ[23] − ϕ[13] + ϕ[12]) − σ [sin(ϕ[13] + ϕ[12]) + sin(ϕ[13] + ϕ[23] − ϕ[34])],
·ϕ[23] = ω̂[23] − σ sin(ϕ[23] − ϕ[13] + ϕ[12]) − σ [sin(ϕ[23] − ϕ[12]) + sin(ϕ[13] + ϕ[23] − ϕ[34])],
·ϕ[34] = ω̂[34] − σ [sin(ϕ[34]) − sin(ϕ[13] + ϕ[23] − ϕ[34])],



If we define a higher-order Kuramoto model on  

n-simplices,  

(let us say links, n=1) a key question is: 

What is the dynamics induced  

on (n-1) faces and (n+1) faces? 

i.e. what is the dynamics induced on nodes and triangles?



Projected dynamics on  
n-1 and n+1 faces

A natural way to project the dynamics is to use the 
incidence matrices obtaining 

ϕ[+] = B⊤
[n+1]ϕ

ϕ[−] = B[n]ϕ

Discrete curl

Discrete divergence



Projected dynamics on  
n-1 and n+1 faces

Thanks to Hodge decomposition, 


the projected dynamics 


on the (n-1) and (n+1) faces 


decouple

·ϕ[+] = B⊤
[n+1]ω̂ − σL[down]

[n+1] sin(ϕ[+])
·ϕ[−] = B[n]ω̂ − σL[up]

[n−1] sin(ϕ[−])



Synchronization transition

R[+] =
1

Nn+1

Nn+1

∑
α=1

e ϕ[+]
α𝕚 𝕚R[−] =

1
Nn−1

Nn−1

∑
α=1

e ϕ[−]
α



Order parameters using the 
n-dimensional phases

R =
1
Nn

Nn

∑
α=1

e ϕα𝕚



Order parameters using the 
n-dimensional phases

R↑ =
1
Nn

Nn

∑
α=1

e ϕ↑
αR↓ =

1
Nn

Nn

∑
α=1

e ϕ↓
α𝕚 𝕚

ϕ↓ = Ldown
[n] ϕ ϕ↑ = Lup

[n]ϕ

R
↑

R
↓



Only if we perform  

the correct topological filtering  

of the topological signal  

we can reveal higher-order synchronisation



Explosive higher-order 
synchronisation

We propose the Explosive Higher-order Kuramoto model 


defined as 


·ϕ = ω̂ − σR[−]B[n+1] sin B⊤
[n+1]ϕ − σR[+]B⊤

[n] sin B[n]ϕ



Projected dynamics
The projected dynamics on 


(n+1) and (n-1) are now coupled 


by their order parameters

·ϕ[+] = B⊤
[n+1]ω̂ − σR[−]L[down]

[n+1] sin(ϕ[+])
·ϕ[−] = B[n]ω̂ − σR[+]L[up]

[n−1] sin(ϕ[−])



The synchronisation 
transition is discontinuous
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Order parameters 
associated to n-faces
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Higher-order synchronisation 
on real Connectomes

Homo sapiens Connectome 

C.elegans Connectome
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Take home messages
• Hodge theory is combined with the theory of dynamical systems to shed light 

on higher-order synchronization.  

• With our theoretical framework we can treat synchronization of topological 
dynamical signals associated to links, like fluxes, or to triangles or other 
higher-order simplices.  

• The simple higher-order Kuramoto model of n-dimensional topological 
signals induces a dynamics on n+1 and n-1 faces that is uncoupled and  
synchronises at a continuous synchronisation transition with 𝞼c=0. 

  
• The explosive higher-order Kuramoto model couples the projected dynamics 

on n+1 and n-1 simplices inducing a discontinuous transition.



Take home messages

We have shown that topological  signals can undergo  
a synchronization transition,  

but this synchronization can be unnoticed  
if the correct topological transformations are not performed.  

What we propose here is the equivalent of a Fourier transform  
for topological signals that can reveal  
this transition in real systems such as  

biological transport networks and  the brain.



Topological Dirac operator
How to treat the interaction between topological signals of different dimensions  

coexisting in the same network topology?

G. Bianconi, 
 Topological Dirac equation on networks and simplicial complexes (2021)



Topological sinchronization
 In a network topological synchronisation locally couples  

topological signals defined on nodes and links
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Dirac operator of a network
• The Dirac operator of a network can be defined as


• Acting on a vector formed by topological signal of nodes 
and links (a vector whose block structure is formed by a  0-
cochain and a 1-cochain)       

D = (
0 B[1]

B⊤
[1] 0 )

Φ = ( θ
ϕ)



Dirac operator is the  
“square root” of the Laplacian
• The square of the Dirac operator of a network


•  is the higher-order Laplacian matrix

D = (
0 B[1]

B⊤
[1] 0 )

D2 = L = (
L[0] 0
0 L[1])



Synchronization of uncoupled 
topological signals

• The uncoupled dynamics of nodes and links of a network 


• can be expressed by a single equation


• Where we have defined the Dirac operator D and the 
vectors 𝜱 and 𝜴 as

·ϕ = ω̂ − σB⊤
[1] sin B[1]ϕ

·θ = ω − σB[1] sin B⊤
[1]θ

·Φ = Ω − σD sin DΦ

Φ = ( θ
ϕ) Ω = (ω

ω̂)D = (
0 B⊤

[1]

B[1] 0 )



Phase-lags

We introduce a phase-lag for the dynamics of the nodes 
that depends on the dynamics of the nearby links 

We introduce a phase-lag for the dynamics of the link that 
depends on the dynamics of the nearby nodes



Topological synchronisation
• With the following notation 


• Topological synchronisation follows the equation


• Where we have defined

·Φ = Ω − σD sin[(D − γ𝓚−1L)Φ]

Φ = ( θ
ϕ) Ω = (ω

ω̂)

γ = (I 0
0 −I) 𝓚 = (

K[0] 0
0 K[1])D2 = L = (

L[0] 0
0 L[1])

D = (
0 B[1]

B⊤
[1] 0 )



Topological synchronisation

The dynamics of topological signals of nodes and links is 
dictated by the set of equations


·θ = ω − σB⊤
[1] sin(B[1]θ + L[1]ϕ/2)

·ϕ = ω̂ − σB⊤
[1] sin(B[1]ϕ − K[0]

−1L[0]θ)



Order parameters
• The canonical variables for topological synchronisation are


• Where   and   leading to the two 
order parameters 

ψ = B[1]ϕ Θ = K−1
[0]Aθ

α = θ + ψ/2
β = ψ − θ + Θ

Xα = RαeiΨα =
1
N

N

∑
j=1

eiαj

Xβ = RβeiΨβ =
1
N

N

∑
j=1

eiβj



Stationary state solution on 
a fully connected network

• We consider a fully connected network


• With parameters given by 


Assuming stationarity the order parameter  follows the 
same equations of the standard Kuramoto model

Rα = 0

Rα =
1
N ∫|ω−Ω0|≤σRα

dωG0(ω) 1 − ( ω − Ω0

σRα )
2

σ → σ/N
ωi ∼ 𝒩(Ω0,1)

ω̃i ∼ 𝒩(0,1/ N − 1)

Incoherent phase

Coherent phase



Phase diagram of the 
standard Kuramoto model

Rα

σσc

σc =
2

πG(Ω0)
= 1.5957…

Phase diagram in a fully connected network



Topological synchronisation 
is explosive

Phase diagram in a fully connected network

σc =
2

πG(Ω0)
= 1.5957…

σ⋆
c =

12
5

1
πG(Ω0)

= 1.914…

σ⋆
I = 3.70 ± 0.05



Phase diagram of 
topological synchronisation

0 1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

R

Coupled  
signals of  

Topological  
Synchronization



Rhythmic phase



Desynchronization transition 
in the rhythmic phase



Summary

Topological synchronisation coupling locally 
topological signals of nodes and links  

is explosive 

gives rise of rhythmic phases that might be related 
to brain rhythms



Higher order 
networks
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