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Higher-order networks

Higher-order network are characterising the
interaction between two ore more nodes and

are formed by nodes, links, triangles,
tetrahedra etc.

/[

d=2 simplicial complex d=3 simplicial complex



Higher-order network data

Brain data Face-to-face interactions
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Generalized network structures
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Going beyond the framework of simple networks
is of fundamental importance
for understanding the relation between structure and

dynamics in complex systems
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Simplices

Lo A X

O-simplex  1-simplex 2-simplex 3-simplex

A simplex of dimension d is a set of d+1 nodes
a = [io, il’ i2, ld]

-it indicates the interactions between the nodes

-it admits a topological and geometrical interpretation



Faces of a simplex

A face of a d-dimensional simplex
is a s-dimensional simplex (with 5<d)

formed by a non-empty subset of its nodes

3-simplex

Faces

O o—o

4 0-simplices 6 1-simplices 4 2-simplices



Simplicial complex

A simplicial complex % is a set of simplices
closed under the inclusion of the faces of every

simplex

If a simplex « belongs
to the simplicial complex %
then every face of «

must also belong to %

H = ([11,121, 131, [41, [5], [6],
6 [1,21, 1,31, [1,4], [1,5], [2,3],
[3,41, 3,51, [3,6], [5.,6],
[1,2,3],11,3,4],[1,3,5],[3,5,6]}



Point
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Betti numbers

Circle

ﬂo=1
ﬁ1:1
, =0

Sphere

po=1
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Betti number 1

Fungi network from Sang Hoon Lee, et. al. Jour. Compl. Net. (2016)



Topological signals

Simplicial complexes and networks can sustain dynamical variables (signals)

not only defined on nodes but also defined on higher order simplices
these signals are called
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Topological signals

Citations in a collaboration network

Speed of wind at given locations

Currents at given locations in the ocean
Fluxes in biological transportation networks
Synaptic signal

Edge signals in the brain



Higher-order structure and dynamics
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Simplicial complex models




Kuramoto model



fundamental dynamical process

Synchronization is a
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Synchronization
pioners

Yoshiki Kuramoto 1974



Kuramoto model on a
- network

0




Kuramoto model on a
network

Given a network of N nodes
defined by an adjacency matrix a
we assign to each node a phase obeying

9—w+02a sm( )

where the internal frequencies of the nodes
are drawn randomly from

w ~ N(Q,1)

and the coupling constantis ¢




Order parameter for
synchronization

e \We consider the global order parameter

R=- " 10
= ,-;e

e The role of R is to indicate the synchronisation transition

R=~0 for s < o,
R finite for s > o,




Kuramoto Model
In an infinite fully connected network
we have
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Network topology
and
Higher-order Laplacians



Orientation of the simplex

Each simplex

a = ligipy...ni,].

has an orientation

Therefore we have

Q—>®

® ®

[i,j]1=—1j,i] [i,j, k] = [, k, il = [k, i, jl = — [, i, k]l = — [k, j,i] = — [i, k, j]



Oriented simplicial complex
and n-chains

Example of 1-chain @

a € €,

a=[1,3]-1[2,3] +[24]



Boundary operator

The boundary map o, is a linear operator
an : (gn - an—l

whose action is determined by the action on each n-simplex of the simplicial complex

n
Opligsiyoeniy) = Yo (= DPligyiys ooy puipyys-eesiy].
p=0

Therefore we have

Q—>® O ®

0,[1,2] = [2] - [1]. 0,[1,2,3] =[2,3] - [1,3] + [1,2].



The boundary of a
boundary is null

The boundary operator has the property
0,0,.,=0 Vn2>1

n-n+

Which is usually indicated by saying that the boundary of the
boundary is null.

This property follows directly from the definition of the
boundary, as an example we have

0105[i, j, k] = 0y([j, kI = [i, k] + [, j1) = = [j] + [k] + [i] = [k] = [i] + [j] = 0.



Incidence matrices

Given a basis for the n simplices and n-1 simplices
the n-boundary operator

n
Opligsyoeniy) = Do (= DPligy iy ooy psipygsoeeny].
p=0

is captured by the incidence matrix B,

(1,21 [1,3] [23] [3.4]

1 -1 -1 0 0
@ By=021 1 0 -1 0,
31 0 1 1 -1

4 0o o0 0 1

[1,2,3]
121 1

B =[13] -1
23] 1

[3,4] 0



Boundary of the boundary
Is null

In terms of the incidence matrices the relation

0,0,.,=0 Vn>1

n’n+

Can be expressed as

BBy =0 Vn>1 B, By, =0 Vn>1




Graph Laplacian in terms of
the iIncidence matrix

The graph Laplacian of elements
(L), = S5k — @y
Can be expressed in terms of the 1-incidence matrix

as

_ T
Loy = BpyByy;-




Higher-order Laplacian

The higher order Laplacians can be defined in terms of the incidence
matrices as

_nT
L, =B

i
B + Bpay1 B

[n+1] "

The dimension of the ker(L,) is the n-Betti number B,
The higher order Laplacian can be decomposed as

— 14 up
Ly, =L"+ L[n],

with
down _ pT
L[n] _B[n]B[n]’

up __ T
L[n] - B[n+1]B[n+1]'



Hodge decomposition

The Hodge decomposition can be summarised as

R = img(B/ ) @ ker(L,,) ® img(B,, )

This means that Ly, L%, L{1"are commuting and can be diagonalised
simultaneously. In this basis these matrices have the block structure

Do 0 0 Do 0 0 00 0

—1y down
UL, U= o o o ULG"U=| o o of U'LPU=(00 0
0 0 D7 0 00 0 0 Dy

* Therefore an eigenvector in the ker of Ly, is also in the ker of both L”. Lo

. An eigenvector corresponding to an non-zero eigenvalue of Ly,
is either a non-zero eigenvector of Lﬁi’] or a non-zero eigenvector of Lﬁf]wn




Explosive higher-order
Kuramoto model
on simplicial complexes

A. P. Millan, J. J. Torres, and G.Bianconi,
Physical Review Letters, 124, 218301 (2020)



Topological signals

Simplicial complexes can sustain dynamical variables (signals)
not only defined on nodes but also defined on higher order simplices
these signals are called topological signals




Standard Kuramoto model in
terms of incidence matrices

The standard Kuramoto model, can be expressed in terms

of the incidence matrix Byijas

- —
0 = —oB[;;sinB .0

where we have defined the vectors

0 - (61,02, ...,Qi...)T

w = (0, w,, ...,coi...)T

and we use the notation SiIl X

to indicates the column vector where the sine function is taken element wise



Topological signals

We associate to each

n-dimensional simplex « a phase ¢_

For instance for n=1 we might associate to each link a oscillating flux

The vector of phases is indicated by

d=C0C...p,..)7




Higher-order Kuramoto
model

We propose to study the higher-order Kuramoto model

defined as

h . BT T o
¢ =0 —o0B,,sinB  p—oB,sinB,p,

where is the vector of phases associated to n-simplices

and the topological signals ad their internal frequencies are indicated by
p=(..0,.)"

&=(.d,..)"

with the internal frequencies

&, ~ N(Q,1)



Topologically induced

many-body interactions
@

®

© ®

D121 = @p1p) — oSz — Pz + P — 0 [Sin(¢[1z] — Ppo3p + sin(p3; + (15[12])],
3 = Oppz)+ o sinlPps; — P+ Ppyy) — o [sin(¢[13] + dpop + sin(Pz + Pz — ¢[34])],
D31 = Dpa3) — 0 5I0(P3) — Ppsy + Pizy) — 0 [sin(Poz; — Ppioy) + sin(dyis) + Ppaz) — Pz

D341 = 34— © [sin(¢[34]) — sin(¢3 + Ppoz; — ¢[34])],



If we define a higher-order Kuramoto model on
n-simplices,
(let us say links, n=1) a key question is:
What is the dynamics induced
on (n-1) faces and (n+1) faces?

I.e. what is the dynamics induced on nodes and triangles?



Projected dynamics on
n-1 and n+1 faces

A natural way to project the dynamics is to use the
incidence matrices obtaining

¢[+] — BE;Z+1]¢ Discrete curl

¢ = = B[n]¢ Discrete divergence



Projected dynamics on
n-1 and n+1 faces

Thanks to Hodge decomposition,
the projected dynamics
on the (n-1) and (n+1) faces

decouple

i+ — pT A [down] o3 [+]
¢ =B, @ GL[n_H] sin(¢p'™)

¢! =B, d — oL") sin(@!™)




Synchronization transition
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Order parameters using the
n-dimensional phases
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Order parameters using the
n-dimensional phases
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Only if we perform
the correct topological filtering
of the topological signal

we can reveal higher-order synchronisation



Explosive higher-order
synchronisation

We propose the Explosive Higher-order Kuramoto model

defined as

H A — . T T .
¢ =& — oR! ]B[n+1] sinBp, ¢ — GRH]B[n] sin B, ¢




Projected dynamics

The projected dynamics on
(n+1) and (n-1) are now coupled

by their order parameters

pl+l — BT 4 [—1y [down] ; [+]
1) =B, ;@ —oR L[n+1] sin(¢p'™)

-1 — N SRIHY [Pl [—]
¢ =B —oR L[n_l] sin(¢h'™)




The synchronisation
transition Is discontinuous
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Order parameters
associated to n-faces
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Higher-order synchronisation
on real Connectomes
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Take home messages

Hodge theory is combined with the theory of dynamical systems to shed light
on higher-order synchronization.

With our theoretical framework we can treat synchronization of topological
dynamical signals associated to links, like fluxes, or to triangles or other
higher-order simplices.

The simple higher-order Kuramoto model of n-dimensional topological
signals induces a dynamics on n+1 and n-1 faces that is uncoupled and

synchronises at a continuous synchronisation transition with oc=0.

The explosive higher-order Kuramoto model couples the projected dynamics
on n+1 and n-1 simplices inducing a discontinuous transition.



Take home messages

We have shown that topological signals can undergo
a synchronization transition,
but this synchronization can be unnoticed
if the correct topological transformations are not performed.

What we propose here is the equivalent of a Fourier transform
for topological signals that can reveal
this transition in real systems such as
biological transport networks and the brain.



Topological Dirac operator

How to treat the interaction between topological signals of different dimensions
coexisting in the same network topology?

G. Bianconi,
Topological Dirac equation on networks and simplicial complexes (2021)




Topological sinchronization

In a network topological synchronisation locally couples
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Dirac operator of a network

e The Dirac operator of a network can be defined as

D — _|_

e Acting on a vector formed by topological signal of nodes
and links (a vector whose block structure is formed by a 0-
cochain and a 1-cochain)

(0



Dirac operator is the
“square root” of the Laplacian

e The square of the Dirac operator of a network

< 0 Bm)
D=|__

e s the higher-order Laplacian matrix

D2_T — Lg 0



Synchronization of uncoupled
topological signals

e The uncoupled dynamics of nodes and links of a network

. . . T . A .
0 = w — oB;;sin B, 0 ¢ = — 0B, sinB ;b

e can be expressed by a single equation

d=Q - 6DsinDP

 Where we have defined the Dirac operator D and the
vectors @ and Q as

0 B/
D= [1] _ 0 _ w
(B[l] 0 > ®= <¢> 2= <a3>



Phase-lags

We introduce a phase-lag for the dynamics of the nodes
that depends on the dynamics of the nearby links

We introduce a phase-lag for the dynamics of the link that
depends on the dynamics of the nearby nodes



Topological synchronisation

e With the following notation

0 B
B 0 (o D= [1]
o (D) a-(%) (1w, )

e Topological synchronisation follows the equation

® = Q — oDsin[(D — yF " 'L)D]

e Where we have defined

L 0 I 0
pl=L=( W — K

0 Ky



Topological synchronisation

The dynamics of topological signals of nodes and links is
dictated by the set of equations

Y o nT
0=w GB[I]

i~ pT
¢ =w —oB;

sin(By; 0 + Ly, $/2)




Order parameters

e The canonical variables for topological synchronisation are

a=0+y/2
p=w—-0+0

e Wherey =B 1¢p and O = K AH leading to the two
order parameters

Rﬂez‘l’ﬁ _




Stationary state solution on
a fully connected network

| c — o/N
e We consider a fully connected network o, ~ N(Qp,1)
e With parameters given by O~ HOLYN=1)

Assuming stationarity the order parameter follows the
same equations of the standard Kuramoto model

Ra = () Incoherent phase

2
Ra ——p— da)GO(a)) 1 — Coherent phase
N |w—€|<oR, \ O-Ra




Phase diagram of the
standard Kuramoto model

o, =
nG(L))

= 1.5957...

R

a
GC 0

Phase diagram in a fully connected network



Topological synchronisation
Is explosive

Ra
o, = = 1.5957...
7G(€2)
12 1
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______ ¥ = 3.70 £ 0.05
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o — % *
C O-C O-I 0

Phase diagram in a fully connected network



Phase diagram of

topological synchronisation
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Rhythmic phase
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Desynchronization transition
In the rhythmic phase
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Summary

Topological synchronisation coupling locally
topological signals of nodes and links

is explosive

gives rise of rhythmic phases that might be related
to brain rhythms



Higher order networks and
dynamics
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