

Up-to-date status of neutrino mass and mixing parameters

FRANCESCO CAPOZZI

(capozzi@vt.edu)

Neutrinos are very light, weakly interacting particles without electric charge

Three flavours $\alpha = e, \mu, \tau$, each identified by the corresponding lepton

Neutrinos hardly interact with matter

Only 1 neutrino (1 MeV) in 10¹¹ interacts with the Earth

Downside: need very large detectors to collect a reasonable statistics

We only see the products of interactions

Downside: need very large detectors to collect a reasonable statistics

Example: IceCUBE with 1 km³ of ice

Upside: neutrinos travel unimpeded through the universe

Upside: neutrinos are messengers from astrophysical sources and a remnant of the Big Bang (affecting the evolution of the Universe)

Neutrinos with a given flavour are a superposition of mass eigenstates

Mass eigenstates propagate with different phases, inducing oscillations

Neutrinos produced in flavour states are a superposition of mass states

$$\begin{pmatrix} \nu_{\alpha} \\ \nu_{\beta} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \end{pmatrix}$$

$$\theta$$
 = "mixing angle" $\Delta m^2 = m_2^2 - m_1^2$

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$$

Oscillations are only possible if neutrinos are massive particles ($\Delta m^2
eq 0$)

Neutrinos produced in flavour states are a superposition of mass states

Oscillations are only possible if neutrinos are massive particles ($\Delta m^2
eq 0$)

Neutrinos produced in flavour states are a superposition of mass states

Oscillations are only possible if neutrinos are massive particles ($\Delta m^2
eq 0$)

Neutrino Properties

In a 3-neutrino framework we have 10 mass and mixing parameters

What do we need?

What do we need?

A Global Analysis gives the best precision and information on unknowns

Plethora of experiments: very rich phenomenology

Experiment Type	Oscillation Channel(s)	Sensitive to		
Solar (Homestake,Gallex,GNO, Borexino,SNO,SK)	Ve → Ve	(θ ₁₂ , δm ² , θ ₁₃)		

Long baseline reactors (KamLAND)	⊽e → ⊽e	(θ₁₂, δm², θ₁₃)
-------------------------------------	----------------	---

Plethora of experiments: very rich phenomenology

Plethora of experiments: very rich phenomenology

Future challenges and directions

Current and future level of precision creates unprecedented challenges:

Theoretical understanding of all ingredients must be refined

analysis details are becoming too complicated for external pheno groups

common ingredients must be treated in the context of a global analysis (models for cross sections, fluxes, ...)

Global analyses will require joint experimental/pheno effort

Cosmology, β and $0\nu\beta\beta$ decays can probe ABSOLUTE neutrino masses:

$$m_{\beta}^{2} = \sum_{i=1}^{3} |U_{ei}|^{2} m_{i}^{2}$$

Beta decay with Katrin

M. Aker et al. [KATRIN Collaboration], arXiv:2105.08533

 $m_{\beta}^2 = 0.1 \pm 0.3 \text{ eV}^2$

Neutrinoless double beta decay measures the decay time T of a nucleus

$$\frac{1}{T_i} = G_i |M_i|^2 m_{\beta\beta}^2$$

Nuclide	Experiment(s)
$^{76}\mathrm{Ge}$	GERDA
$^{76}\mathrm{Ge}$	MAJORANA
$^{130}\mathrm{Te}$	CUORE
136 Xe	KamLAND-Zen 400
136 Xe	KamLAND-Zen 800 prelim.
136 Xe	EXO-200

Neutrinoless double beta decay measures the decay time T of a nucleus

Nuclear matrix elements correlations are important

Cosmology probe sum of neutrino masses Σ : e.g. matter power spectrum

Cosmological inputs for nonoscillation data analysis		Results: Cosmo only		$\mathrm{Cosmo} + m_eta + m_{etaeta}$		
#	Model	Data set	Σ (2 σ)	$\Delta\chi^2_{ m IO-NO}$	Σ (2 σ)	$\Delta\chi^2_{\rm IO-NO}$
0	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, EE	$<0.34~{\rm eV}$	0.9	$<0.32~{\rm eV}$	1.0
1	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, $EE + lensing$	$< 0.30~{\rm eV}$	0.8	$< 0.28~{\rm eV}$	0.9
2	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, $EE + BAO$	$< 0.17~{\rm eV}$	1.6	$< 0.17~{\rm eV}$	1.8
3	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, $EE + BAO + lensing$	$< 0.15~{\rm eV}$	2.0	$< 0.15~{\rm eV}$	2.2
4	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, EE + lensing + H_0 (R19)	$<0.13~{\rm eV}$	3.9	$< 0.13~{\rm eV}$	4.0
5	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EE + BAO + H_0 (R19)	$< 0.13~{\rm eV}$	3.1	$< 0.13~{\rm eV}$	3.2
6	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EE + BAO + lensing + H_0 (R19)	$<0.12~{\rm eV}$	3.7	$< 0.12~{\rm eV}$	3.8
7	$\Lambda {\rm CDM} + \Sigma + A_{\rm lens}$	Planck TT, TE, $EE + lensing$	$< 0.77~{\rm eV}$	0.1	$< 0.66~{\rm eV}$	0.1
8	$\Lambda {\rm CDM} + \Sigma + A_{\rm lens}$	Planck TT, TE, $EE + BAO$	$< 0.31~{\rm eV}$	0.2	$< 0.30~{\rm eV}$	0.3
9	$\Lambda {\rm CDM} + \Sigma + A_{\rm lens}$	Planck TT, TE, EE + BAO + lensing	$< 0.31~{\rm eV}$	0.1	$< 0.30~{\rm eV}$	0.2

CHALLENGE: tensions between different datasets (Hubble, lensing)

Cosmological inputs for nonoscillation data analysis		Results: Cosmo only		$\mathrm{Cosmo} + m_eta + m_{etaeta}$		
#	Model	Data set	Σ (2 σ)	$\Delta\chi^2_{ m IO-NO}$	Σ (2 σ)	$\Delta\chi^2_{\rm IO-NO}$
0	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, EE	$< 0.34~{\rm eV}$	0.9	$< 0.32~{\rm eV}$	1.0
1	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, $EE + lensing$	$< 0.30~{\rm eV}$	0.8	$< 0.28~{\rm eV}$	0.9
2	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, $EE + BAO$	$< 0.17~{\rm eV}$	1.6	$< 0.17~{\rm eV}$	1.8
3	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, $EE + BAO + lensing$	$< 0.15~{\rm eV}$	2.0	$< 0.15~{\rm eV}$	2.2
4	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, EE + lensing + H_0 (R19)	$<0.13~{\rm eV}$	3.9	$< 0.13~{\rm eV}$	4.0
5	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, EE + BAO + H_0 (R19)	$< 0.13~{\rm eV}$	3.1	$< 0.13~{\rm eV}$	3.2
6	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, EE + BAO + lensing + H_0 (R19)	$<0.12~{\rm eV}$	3.7	$< 0.12~{\rm eV}$	3.8
7	$\Lambda {\rm CDM} + \Sigma + A_{\rm lens}$	Planck TT, TE, $EE + lensing$	$<0.77~{\rm eV}$	0.1	$< 0.66~{\rm eV}$	0.1
8	$\Lambda {\rm CDM} + \Sigma + A_{\rm lens}$	Planck TT, TE, EE + BAO	$< 0.31~{\rm eV}$	0.2	$< 0.30~{\rm eV}$	0.3
9	$\Lambda {\rm CDM} + \Sigma + A_{\rm lens}$	Planck TT, TE, EE + BAO + lensing	$< 0.31~{\rm eV}$	0.1	$< 0.30~{\rm eV}$	0.2

A possibility is considering less constraining but consistent datasets

10	$\Lambda {\rm CDM} + \Sigma$	$ACT + WMAP + \tau_{prior}$	$< 1.21~{\rm eV}$	-0.1	$< 1.00~{\rm eV}$	0.1
11	$\Lambda {\rm CDM} + \Sigma$	ACT + WMAP + Planck lowE	$< 1.12~{\rm eV}$	-0.1	$< 0.87~{\rm eV}$	0.1
12	$\Lambda \mathrm{CDM} + \Sigma$	ACT + WMAP + Planck lowE + lensing	$< 0.96~{\rm eV}$	0.0	$<0.85~{\rm eV}$	0.1

Cosmological inputs for nonoscillation data analysis		Results: Cosmo only		$\mathrm{Cosmo} + m_eta + m_{etaeta}$		
#	Model	Data set	Σ (2 σ)	$\Delta\chi^2_{\rm IO-NO}$	Σ (2 σ)	$\Delta\chi^2_{\rm IO-NO}$
0	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, EE	$< 0.34~{\rm eV}$	0.9	$<0.32~{\rm eV}$	1.0
1	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, EE + lensing	$< 0.30~{\rm eV}$	0.8	$<0.28~{\rm eV}$	0.9
2	$\Lambda \mathrm{CDM} + \Sigma$	Planck TT, TE, EE + BAO $DEFAUL$	$<0.17~{\rm eV}$	1.6	$< 0.17~{\rm eV}$	1.8
3	$\Lambda \text{CDM} + \Sigma$	Planck $TT, TE, EE + BAO + lensing$	< 0.15 eV	2.0	< 0.15 eV	2.2
4	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EE + lensing + $H_0(R19)$	$< 0.13 \ {\rm eV}$	3.9	$< 0.13 \ {\rm eV}$	4.0
5	$\Lambda \text{CDM} + \Sigma$	Planck TT, TE, EE + BAO + H_0 (R19)	$<0.13~{\rm eV}$	3.1	$< 0.13~{\rm eV}$	3.2
6	$\Lambda {\rm CDM} + \Sigma$	Planck TT, TE, EE + BAO + lensing + H_0 (R19)	$<0.12~{\rm eV}$	3.7	$< 0.12~{\rm eV}$	3.8
7	$\Lambda {\rm CDM} + \Sigma + A_{\rm lens}$	Planck $TT, TE, EE + lensing$	$< 0.77~{\rm eV}$	0.1	$< 0.66~{\rm eV}$	0.1
8	$\Lambda {\rm CDM} + \Sigma + A_{\rm lens}$	Planck $TT, TE, EE + BAO$	$< 0.31~{\rm eV}$	0.2	$< 0.30~{\rm eV}$	0.3
9	$\Lambda {\rm CDM} + \Sigma + A_{\rm lens}$	Planck TT, TE, $EE + BAO + lensing$	$< 0.31~{\rm eV}$	0.1	$< 0.30~{\rm eV}$	0.2

A possibility is considering less constraining but consistent datasets

10	$\Lambda {\rm CDM} + \Sigma$	$ACT + WMAP + \tau_{prior}$	$< 1.21~{\rm eV}$	-0.1	$< 1.00~{\rm eV}$	0.1
11	$\Lambda CDM + \Sigma$	ACT + WMAP + Planck lowE	$< 1.12~{\rm eV}$	-0.1	$< 0.87~{\rm eV}$	0.1
12	$\Lambda CDM + \Sigma$	ACT + WMAP + Planck lowE + lensing	$< 0.96 \ {\rm eV}$	0.0	$< 0.85 \ {\rm eV}$	0.1

ALTERNATIVE

Global analysis

 Σ can be constrained down to < 0.15 eV, $m_{\beta\beta}$ < 0.05 eV

Global analysis

Preference for NO can go up to 3.4σ with "aggressive" cosmological data

Conclusions

- Neutrino mass differences and mixing angles known at few % precision
- Parameters not completely known: δ , mass ordering, θ_{23} , absolute mass

- 90% hint for CP violation

- $2/3\sigma$ hint in favor of normal ordering, depending on cosmological dataset

 Entering precision era for both oscillation and absolute neutrino masses.
 Analysis are becoming extremely complicated (correlated uncertainties, tensions among data sets, ecc...)