

SOCIETÀ ITALIANA DI FISICA

POLITECNICO DI MILANO

Coherent Raman microscopy for biomedical applications

G. Cerullo, D. Polli, A. De La Cadena, F. Vernuccio

Dipartimento di Fisica, Politecnico di Milano, Italy

107° CONGRESSO NAZIONALE A CRIMS N 13-17 settembre 2021

Introduction and motivation (I)

Optical microscopy is an extremely powerful investigation tool thanks to its ability of visualizing morphological details in cells and tissues on the sub-micrometer scale

It provides a much higher spatial resolution compared to magnetic resonance imaging, and at the same time it does not require the sample to be fixed, as in electron microscopy.

Fluorescence microscopy using exogenous (dyes or semiconductor quantum dots) or endogenous (GFPs) markers offers a superb sensitivity, down to the single molecule limit.

However...

Introduction and motivation (II)

The addition of fluorescent markers cannot be implemented within certain cells or tissues, or it can give strong perturbation to the investigated system

For small molecules (signaling peptides, neurotransmitters, metabolites and drugs) the dimension of the marker is comparable to or even bigger than that of the molecule itself, so that it heavily interferes with its biological function

➤ In many clinical applications involving live tissue imaging, staining with fluorophores is not possible or not desired

 \Rightarrow there is a great need for **intrinsic**, **label-free imaging methods** that do not require the addition of any fluorescent molecule.

Vibrational fingerprinting of molecules (I)

Every component of a biological specimen (cell or tissue) is characterized by a vibrational spectrum that reflects its molecular structure and provides an endogenous and chemically specific signature for its identification.

Raman Scattering

Tissues display characteristic vibrational spectra → "fingerprint" - "chemical signature"! Non-invasive (no staining, no labelling)

Motivation: tumour identification

Biopsies stained with dyes (H&E)

Opinion of a histo-pathologist: not objective!

- ➤ Low sensitivity (60-90%)
 → many false negatives!
- Time consuming
- Destructive
- No in-vivo imaging

Spontaneous Raman for tumour identification

SLOW	
	Tumor loca
	Brain metastases
	Esophagus
	Breast in vi
	Polyps in th colon
	Bladder

Tumor location	Specificity	Sensitivity	Ref.
Brain metastases	97-100%	96-99%	Chemometr. Intell. Lab. 117 , 224 (2012)
Esophagus	87%	88%	Phys. Med. Biol. 54 , 7077 (2009)
Breast in vitro	100%	92%	Analyst 135 , 3042 (2010)
Polyps in the colon	95% ex vivo 89% in vivo	91% ex vivo 100% in vivo	Gastrointest. Endosc. 57 , 396 (2003)
Bladder	96-99%	78-98%	J. Raman Spectrosc. 33 , 564 (2002)

From spontaneous to coherent Raman

Spontaneous Raman: incoherent thermal vibrations

Coherent Raman: **coherent** molecular vibrations (driven by Pump+Stokes)

Coherent anti-Stokes Raman Scattering (CARS)

Requires two synchronized narrowband pulses, the pump (ω_p) and Stokes (ω_s).

Resonance condition:

Giulio Cerullo

Non-resonant background (NRB) in CARS

Four-wavemixing process!

Giulio Cerullo

Anti-Stokes emission outside resonance $\omega_{aS} = 2\omega_p - \omega_S$ and from third molecules 10

The CARS signal is given by:

$$E_{CARS} = -i\chi^{(3)}E_{pu}^{2}E_{S} * L$$
Complex resonant response
$$\chi^{(3)} = \chi^{(3)}_{R} + \chi^{(3)}_{NR}$$
Real non-resonant background (NRB)

We detect:

$$I_{CARS} \propto \left|\chi^{(3)}\right|^2 I_p^2 I_S L^2$$

The CARS signal depends on:

- the square of the pump intensity
- the Stokes intensity
- the square of the propagation length L
- the square modulus of third-order susceptibility

Giulio Cerullo

NRB insight (II)

The NRB can distort and even overwhelm the resonant signal of interest;

The CARS signal scales quadratically with sample concentration.

Giulio Cerullo

POLITECNICO DI MILANO

Stimulated Raman Scattering (SRS)

Free from non-Stimulated decay from a virtual level resonant signals Detect small changes Resonance $\omega_{\rm p} - \omega_{\rm s} = \Omega$ $(<10^{-4}) \Rightarrow$ demodulation condition: SRG: Stimulated ΔI_{S} Raman Gain ΔI_{P} SRI: Stimulated $\omega_{p'}$ ω_{s} Raman Loss Ω Ω Ω ω_{P} ω_{s} ω_{pump} (U_{stokes} Input spectra Sample Output spectra **Giulio Cerullo** POLITECNICO DI MILANO Jena 2017

Stimulated Raman Scattering (SRS)

The Stokes field amplification amounts to:

$$\Delta E_{S} \propto -i\chi^{(3)} \left| E_{pu} \right|^{2} E_{S}$$

and sits on the linear background given by the Stokes field E_s . The SRS signal is given by:

$$\Delta I_{SRS} = \left| E_S + \Delta E_S \right|^2 - \left| E_S \right|^2 \cong 2 \operatorname{Re} \left(E_S^* \Delta E_S \right) \propto \operatorname{Im} \left(\chi_R^{(3)} \right) I_{pu} I_S$$

Advantages of SRS:

The signal is proportional to the imaginary part of $\chi^{(3)}$ and the real NRB is suppressed;

The SRS signal scales **linearly** with sample **concentration**;

The small nonlinear signal ΔE_s is multiplied by the phase-locked Stokes field $E_s \Rightarrow$ self-heterodyne amplification.

Single-frequency SRS: basic layout

 High frequency (multi-MHz) modulation and lock-in detection → high speed (up to video rate) 15

PNAS 112, 11624 (2015)

Label-free SRS imaging of brain tumors

Science Translational Medicine 5, 201ra119 (2013)

Giulio Cerullo

POLITECNICO DI MILANO

17

GOAL: fast and broadband SRS microscopy ¹⁸

Combine the best of two worlds: the information content of **spontaneous Raman** and the imaging speed of **coherent Raman**.

GOAL: fast and broadband SRS microscopy

Broadband high-speed coherent Raman Microscope

Real-time classification of cells and tissues

20 **Broadband stimulated Raman scattering**

Combination of narrowband pump and broadband Stokes, measuring the stimulated Raman gain of the Stokes

Alternative mechanism: broadband pump and narrowband Stokes, measuring the stimulated Raman loss of the pump (inverse Raman scattering)

Multi-channel lock-in SRS

Multi-channel lock-in SRS

lli

A. De La Cadena

G. Sciortino *et al.*, IEEE J. Solid State Circuits (2021)

A. Ragni *et al.*, Integration, the VLSI Journal **67**, 44 (2019)

lli

Multi-channel Lock-In Amplifier

A. Ragni

G. Sciortino

G. Sciortino *et al.*, IEEE J. Solid State Circuits (2021)

A. Ragni *et al.*, Integration, the VLSI Journal **67**, 44 (2019)

lli

Broadband SRS spectra of solvents

• Very good agreement with spontaneous Raman spectra

Broadband SRS imaging of PMMA/PS beads

Distinguishing four separate chemical species

Giulio Cerullo

Distinguishing fatty acid uptake in hepatic cells

Broadband SRS-imaging of HepaRG cells grown in a culture media containing oleic and palmitic fatty acids

oleic acid

palmitic acid

Giulio Cerullo

POLITECNICO DI MILANO

Tumor model – Mouse fibrosarcoma

Giulio Cerullo

POLITECNICO DI MILANO

Tumor model – Mouse fibrosarcoma

POLITECNICO DI MILANO

Giulio Cerullo

 SRS is a powerful approach for fast label-free imaging of biomolecules

 Broadband SRS combines acquisition speed with information content

 Broadband SRS enables high-speed label-free tissue imaging for virtual histopathology

https://www.cambridgeramanimaging.com/