

Nicola D'Agostino

Istituto Nazionale di Geofisica e Vulcanologia, Roma

Congresso SIF, 17 settembre 2021

Earthquake release is intrinsically episodic

Kanamori & Brodsky, 2002

Elastic rebound theory [Reid, 1910] linked the rate of tectonic loading to the intermittent earthquake release

Successful application of quasi-periodic, deterministic models of recurrence has been challenging

Seismic release is characterized by clustering of events (supercyles)

A budget between strain accumulation and seismic release?

What time scale for stationary seismic release?

Geodesy shows stable strain accumulation across deformation zones

Objectives

- Estimate rates of seismic release (from historical seismicity)
 and strain accumulation (from geodesy)
- What is their balance?
- Time scale at which they are comparable?

Implications

- Independent assessment of seismicity rate
- Independent geodetic contribution to seismic hazard
- Aseismic deformation (creep, postseismic)

Seismic strain <u>release</u> in the Apennines

Historical seismicity

www.emidius.mi.ingv.it/CPTI

- CPTI15 the most recent realization of the Italian historical catalogue
- Moment magnitudes M_w for pre-instrumental events estimated from intensity distribution and regressions coefficient calibrated with instrumentally-recorded eqs
- Considered complete for M > 6 in the last ~500 yrs
- Seismic moment of each historical event given by:

$$M_0 = 10^{1.5M_w + 9.05}$$

Seismic strain <u>release</u> in the Apennines

Historical seismicity (1550-2015)

- Average \sim 500 yrs seismic moment release = 6.0 x 10¹⁷ Nm/yr 1 Mw 5.8 event/year
- Periods of clustered events
- 2016-2017 seismic moment release (Mw 5.9, 6.0, 6.5) = 0.08 x 10²⁰ Nm
- Asymptotic approach to stationary value

Strain <u>accumulation</u> in the Apennines

Private and public (scientific and cadastral) continuous GPS/GNSS networks

RING INGV largest scientific network in Europe (> 200 stations)

> 500 stations currently active in the Italian territory

Coverage not homogeneous

Accuracy 1 mm horizontal, 3-4 mm vertical

Stable velocities achieved after 3-4 years

Theoretical framework for comparing strain accumulation and seismic release - 1

Kostrov(1974)

$$\overline{\epsilon}_{ij} = \frac{1}{2\mu A H_s} \sum_{n=1}^{N} M_{ij}^n$$

average strain of the volume = sum of the moment tensors of all the earthquakes within it

$$\dot{M}_{ij}^g = 2\mu A H_s \dot{\epsilon}_{ij}$$

$$A_f$$
 Area H_s seismogenic thickness $\dot{\epsilon}_{ij}$ strain rate tensor μ rigidity

budget of seismic moment available to be released in future eqs

Theoretical framework for comparing strain accumulation and seismic release - 2

Gutenberg-Richter relationship

GPS strain accumulation

Strain rate field from interpolation and spatial derivation of the velocity field

$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial v_x}{\partial y} + \frac{\partial v_y}{\partial x} \right)$$

Total rate of moment accumulation by spatial integration of the strain rate field

$$\dot{M}_0^g = 2\mu A H_s \dot{\epsilon}_{max}$$

$$H_s=10\pm 2.5 km$$
 seismogenic thickness

$$\dot{M}_0^{geod} = 76.9 \pm 15.6 \times 10^{16} Nm/yr$$

GPS strain accumulation

Does the rate of seismic moment accumulation reflect mainly the deformation to accomodate the relative motion between Ad and Ty?

Transient deformation (postseismic, hydrology)?

$$\begin{split} \dot{M}_0^{geod} &= 2\mu A H_s \dot{\epsilon}_{max} = 2\mu \times W \times L \times H_s \times \frac{V}{W} \\ \dot{M}_0^{geod} &= 72.0 \pm 18.0 \times 10^{16} Nm/yr \quad \text{calculated} \\ \dot{M}_0^{geod} &= 76.9 \pm 15.6 \times 10^{16} Nm/yr \quad \text{observed} \end{split}$$

Strain accumulation vs release - 1

- Assume that GPS strain accumulation operated in the last 500 yrs
- geodetic strain accumulation $76.9 \pm 15.6 \times 10^{16} \text{ Nm/yr}$ seismic strain release $60.1 \pm 17.0 \times 10^{16} \text{ Nm/yr}$
- Geodetic strain accumulation ≈ seismic release (within errors) on a 500 yrs timescale
- Clustering (or seismic quiescence) must occur on timescales << 500 years

Strain accumulation vs release - 2

- Earthquake frequency predicted by GPS compatible with historical frequency distribution?
- Use geodetic moment accumulation to predict frequency distribution using Kostrov(1974) and GR b= 1, M_{max} = 7
- Discrepancy Mw < 6 (uncomplete catalogue)
 Agreement Mw > 6 (complete catalogue)
- To balance geodetic rate no need of M_{max} > 7
- Mw \geq 6.5 every 31-75 years

Time/Space distribution of strain accumulation/release (1500-2010)

Space/time distribution of M > 6 events (fault length from scaling relations)

Time/Space distribution of strain accumulation/release (1500-2010)

Intermediate snapshots of seismic release

Space/time distribution of M > 6 events (fault length from scaling relations)

Time/Space distribution of strain accumulation/release (1500-2010)

Space distribution of unreleased seismic moment

Moment deficit (minimum estimates) at two different length scales (25, 50 km)

Intermediate snapshots of seismic release

Space/time distribution of M > 6 events (fault length from scaling relations)

Two areas of significant <u>unreleased</u> strain:

- 1) Umbria-Marche (drained by the 2016-2017 sequence)
- 2) S.Lazio-Molise (seismic/geodetic < 0.25)

Probability of observing unreleased strain?

Overall in the Apennines seismic/geodetic ≈ 1 (if observed long enough)

But locally? What is the probability of observing a given amount of unreleased strain?

Ward(1998): probability of seismic/geodetic ratio as a gamma distribution controlled by the T_{cat}/T_{com} ratio

$$T_{cat}$$
 = catalogue length T_{com} = characteristic time

$$T_{\mathsf{com}} = \mathsf{catalogue} \ \mathsf{length}$$
 $T_{\mathsf{com}} = \mathsf{characteristic} \ \mathsf{time}$ $T_{com} = \frac{\Delta \epsilon}{\dot{\epsilon}} = \frac{coseismic\ strain\ drop}{regional\ strain\ rate}$

Low
$$T_{cat}/T_{com}$$
 = high probability to observe x << 1
High T_{cat}/T_{com} = high probability to observe x ~1

S. Lazio-Molise

$$T_{com} = 0.75 \times 10^{-5} / 30 \times 10^{-9} \text{ yr}^{-1} = 250 \text{ years}$$

 $T_{cat} = 500 \text{ years}$

Conclusions

- Most of the tectonic deformation in the Apennines is accommodated seismically
- 500 yrs seem enough to estimate long-term seismicity rate
- Independent estimate of M_{max} (M_w 7)
- Clustered events (or quiet intervals) on time scales << 500 yrs
- Regions of high unreleased strain can be the target for prevenctive, specific actions aimed at reduction of seismic risk