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Main idea

Data Science Statistical mechanics

Aim of the talk:
O presenting an informative data mining viewpoint
to fundamental objects of many-body theory
O Explore universal behavior of data sets




Why are we planning to data mine a many body

system?

- Motivation 1: large amount of data structures are nowadays
ubiquitous in both theory (Monte Carlo, stochastic
simulations, etc.) and experiments

“Motivation” 2: we now have methods to interpret those, that
were not there in the past

Motivation 3: several open questions can be addressed this
way, similarly to other fields [theoretical chemistry, data

science, spotify]



Motivation 1: large data structures

Atom by atom pictures

Experiments: tons of data (amenable
to statistical methods)

Example: wave function snapshots

Credit: Bloch’s group



Motivation 1: large data structures

Atom by atom pictures

Experiments: tons of data (amenable
to statistical methods)

Example: wave function snapshots

Credit: Bloch’s group

Challenge: exploit naturally
available many-body
correlations!



Motivation 1: large data structures

Theory: outcome of numerical
experiments

Example: Monte Carlo simulations
(CM, HEP, etc.)

7 = e PH

X ={X1, X5, .. Xy}

Elements of a Markov chain



Motivation 1: large data structures

Theory: outcome of numerical y— G—BH
experiments

Example: Monte Carlo simulations X ={X1,Xs,.. XN}
(CM, HEP, etc.) Y

Elements of a Markov chain

Challenge: agnostic
interpretation / e.g., without
assumptions



A basic tool to data mine datasets: the intrinsic dimension

Data mining partition functions:
- Basic idea: a 3-site toy model
- Data mining and classical critical behavior: universal data sets
and emergent simplicity

Data mining path integrals

Conclusions



The intrinsic dimension

The intrinsic dimension

the minimal number of variables
required to describe a dataset

Ex. 1: Klein bottle

Originaldatain D =3
I =2<3

Operational meaning: one just needs
2 independent variables to properly
describe the object of interest




The intrinsic dimension

The intrinsic dimension Widely applied in ab initio

the minimal number of variables molecular dynamics (Laio,
required to describe a dataset Rodriguez, etc.)




The intrinsic dimension

The intrinsic dimension Widely applied in ab initio

the minimal number of variables molecular dynamics (Laio,
required to describe a dataset Rodriguez, etc.)

Intuition: the intrinsic dimension is informative about
(1) number of relevant degrees of freedom, and
(2) complexity of a manifold




A basic example: a 3 site model

Simple example: 3-site Heisenberg
model:

1) States
T = (19171927193)

2) Equilibrium weight:

p(E) ~ e EONT

3) Hamiltonian:

— — —

E@)=-35-5,

N, ~10*/10°




A basic example: a 3 site model

Simple example: 3-site Heisenberg
model:

N, ~10*/10°
1) States

T = (0171927193)

2) Equilibrium weight:

p(E) ~ e EONT

0

‘91 Veis

0
3) Hamiltonian: /\ /\ /\

Message 1: Intrinsic dimension can be informative
about phases - but what about critical behavior?




Many-body: the Ising model in 2D

Hamiltonian
E(S) - Z 5155 Second order (conformal)
(4,9) phase transition at
Data configurations T, =2/In(1+ V2) ~ 2.26...
R v =1
§=(81,82,..,SN.)

Data structure:  s1 = (s11, S12,..) = (0,1,0,1,1,1,0,...)

Distance between points: = ] } :‘ o]
Hamming distance S S 5 °p



Emergence of scale-free network

Hamiltonian

Second order (conformal)
phase transition at

T.=2/In(1+ V2) ~ 2.26...

v =1

1 1 1 1 1 1 1 1

1 | 1 1 1 1 |
(?.00 0.01 0.02 0.03 004 0.05 0.06 0.07

Ing)
_n[1- P(u)
S Y/

N, ~10%*/10°



Emergence of scale-free network

Hamiltonian

Second order (conformal)
phase transition at

T.=2/In(1+ V2) ~ 2.26...

v =1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1
(?.()0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
In(s)

Forget about details: if
straight line, dataset is
parametrized by a Pareto
distribution




Emergence of scale-free network

Hamiltonian

Second order (conformal)
phase transition at

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1
(?.()() 0.01 0.02 0.03 0.04 0.05 0.06 0.07
In(s)

Forget about details: if
straiaht line. dataset is

T:| First observation of scale free network in the present
context - those have widespread applications in
many fields (heural networks, internet, etc.)




Intrinsic dimension: emergent simplicity

AT — 40 V5L = 90
| L =50 &AL = 100’
[, =060 B8], = 120,

emergent simplicity:
manifold simplifies at
transition points!




Intrinsic dimension:

universal behavior

Universal collapse
scaling from
renormalization group

Scaling function

Iq = Lf(§/L)

£~ (T - TC)_V

Second order (conformal) phase
transition at

T.=2/In(1 +2) ~ 2.26...

v =1

Universality of data
structure: structural
[,L=¢__|transition in data space

. 0 157 L1/
Free parameters: Tc, v, C

T, = 2.283(2), v = 1.02(2), ¢ = 0.410(5)

Review: A Pelissetto & E Vicari, Physics Reports (2002)



Intrinsic dimension: quantitative predictions

Universal collapse

scaling from Useful to find critical
renormalization temperature and
group exponents without
any assumption on
1 order parameters!
T(L) =T, ~ T
———————1 T, = 2.2784(2)

T*

2.34

Second order (conformal)
phase transition at

T, =2/In(1 + v2) ~ 2.26... 2289 -

v=1 ) ; ; ]



Kaleidoscope of applications

Same behavior for other second order and
topological transitions

150 |

3-state Potts model
XY model



Main messages

Partition functions of classical many-body models remarkably
describe scale free-networks

Such scale free-networks exhibit emergent simplicity at
transition points

The data structures undergo a transition as long as the model
does, with the same critical exponents!



What’s next?

Application to quantum mechanics: Monte Carlo methods
again

1D Heisenberg model
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Also quantum structures seem to exhibit the same universal
behavior!



What’s next?

Other perspectives:

- experiments on quantum matter: working of a quantum
computer and simulator

- variational Monte Carlo methods (first results with Jastrow
unclear)

- reverse engineer our finding to discover universal data
structures in, e.g., neural networks
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