Data mining the many-body problem

Congresso SIF,

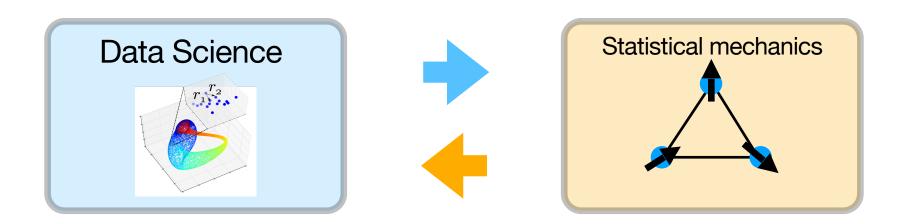
Marcello Dalmonte

ICTP&SISSA, Trieste

Joint work with A. Angelone, R. Fazio, T. Mendes-Santos, A. Rodriguez, X. Turkeshi

Based on: Phys. Rev. X 11, 011040 and Phys. Rev. X Quantum 2, 030332 (2021)

Main idea



Aim of the talk:

o presenting an *informative* data mining viewpoint to fundamental objects of many-body theory

• Explore *universal* behavior of data sets

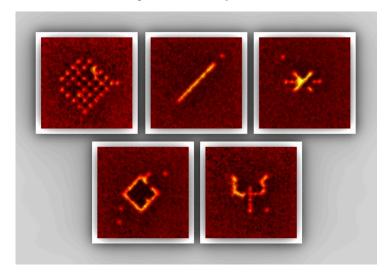
Why are we planning to data mine a many body system?

- Motivation 1: large amount of data structures are nowadays ubiquitous in both theory (Monte Carlo, stochastic simulations, etc.) and experiments
- "Motivation" 2: we now have methods to interpret those, that were not there in the past
- Motivation 3: several open questions can be addressed this way, similarly to other fields [theoretical chemistry, data science, spotify]

Experiments: tons of data (amenable to statistical methods)

Example: wave function snapshots

Atom by atom pictures

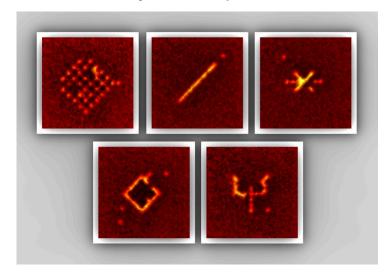


Credit: Bloch's group

Experiments: tons of data (amenable to statistical methods)

Example: wave function snapshots

Atom by atom pictures



Credit: Bloch's group

Challenge: exploit naturally available many-body correlations!

Theory: outcome of numerical experiments

Example: Monte Carlo simulations (CM, HEP, etc.)

$$Z = e^{-\beta H}$$

$$X = \{X_1, X_2, ... X_N\}$$

Elements of a Markov chain

Theory: outcome of numerical experiments

$$Z = e^{-\beta H}$$

Example: Monte Carlo simulations (CM, HEP, etc.)

$$X = \{X_1, X_2, ...X_N\}$$

Elements of a Markov chain

Challenge: agnostic interpretation / e.g., without assumptions

Outline

A basic tool to data mine datasets: the intrinsic dimension

Data mining partition functions:

- Basic idea: a 3-site toy model
- Data mining and classical critical behavior: universal data sets and emergent simplicity

Data mining path integrals

Conclusions

The intrinsic dimension

The intrinsic dimension

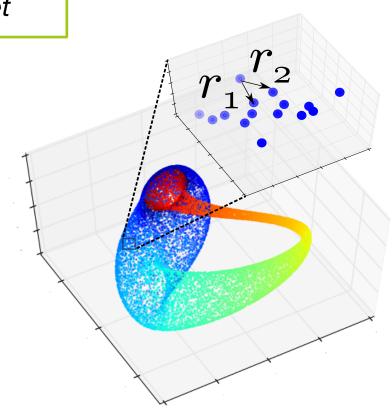
the minimal number of variables required to describe a dataset

Ex. 1: Klein bottle

Original data in D=3

$$I_d = 2 < 3$$

Operational meaning: one just needs 2 independent variables to properly describe the object of interest

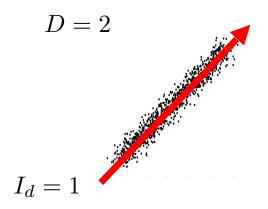


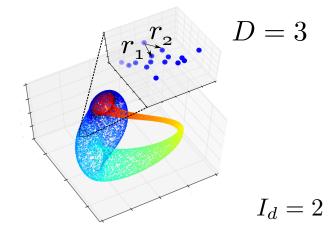
The intrinsic dimension

The intrinsic dimension

the minimal number of variables required to describe a dataset

Widely applied in ab initio molecular dynamics (Laio, Rodriguez, etc.)



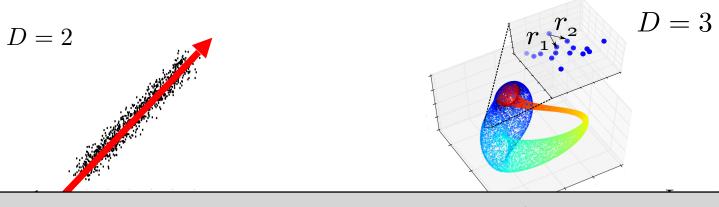


The intrinsic dimension

The intrinsic dimension

the minimal number of variables required to describe a dataset

Widely applied in ab initio molecular dynamics (Laio, Rodriguez, etc.)



Intuition: the intrinsic dimension is informative about (1) number of relevant degrees of freedom, and (2) complexity of a manifold

A basic example: a 3 site model

Simple example: 3-site Heisenberg

model:

$$N_r \simeq 10^4 / 10^5$$

1) States

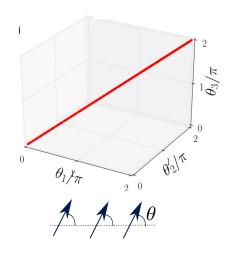
$$\vec{x} = (\vartheta_1, \vartheta_2, \vartheta_3)$$

2) Equilibrium weight:

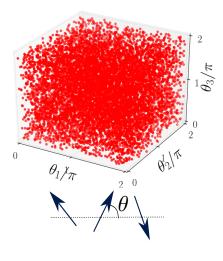
$$\rho(E) \sim e^{-E(\vec{x})/T}$$

3) Hamiltonian:

$$E(\vec{\theta}) = -\sum_{\langle i,j\rangle} \vec{S}_i \cdot \vec{S}_j,$$



$$I_d = 1$$



$$I_d = 3$$

A basic example: a 3 site model

Simple example: 3-site Heisenberg

model:

$$N_r \simeq 10^4 / 10^5$$

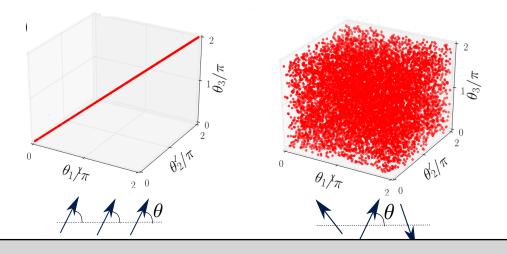
1) States

$$\vec{x} = (\vartheta_1, \vartheta_2, \vartheta_3)$$

2) Equilibrium weight:

$$\rho(E) \sim e^{-E(\vec{x})/T}$$

3) Hamiltonian:



Message 1: Intrinsic dimension can be informative about phases - but what about critical behavior?

Many-body: the Ising model in 2D

Hamiltonian

$$E(\vec{s}) = -\sum_{\langle i,j\rangle} s_i s_j,$$

Data configurations

$$\vec{s} = (s_1, s_2, ..., s_{N_s})$$

Second order (conformal) phase transition at

$$T_c = 2/\ln(1+\sqrt{2}) \simeq 2.26...$$
 $\nu = 1$

Data structure:
$$s_1 = (s_{11}, s_{12}, ...) = (0, 1, 0, 1, 1, 1, 0, ...)$$

Distance between points: $r(\vec{s^i}, \vec{s^j}) =$

$$r(\vec{s^i}, \vec{s^j}) = \sum_p |s_p^i - s_p^j|$$

Emergence of scale-free network

Hamiltonian

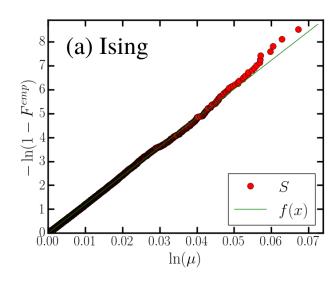
$$E(\vec{s}) = -\sum_{\langle i,j\rangle} s_i s_j,$$

Data configurations

$$\vec{s} = (s_1, s_2, ..., s_{N_s})$$

Second order (conformal) phase transition at

$$T_c = 2/\ln(1+\sqrt{2}) \simeq 2.26...$$
 $\nu = 1$



$$I_d = -\frac{\ln\left[1 - P(\mu)\right]}{\ln\left(\mu\right)}$$

$$N_r \simeq 10^4/10^5$$

Emergence of scale-free network

Hamiltonian

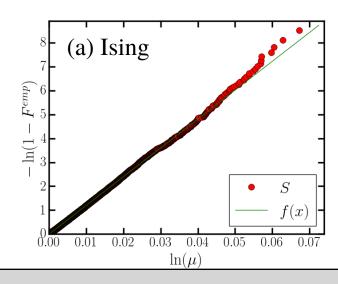
$$E(\vec{s}) = -\sum_{\langle i,j\rangle} s_i s_j,$$

Data configurations

$$\vec{s} = (s_1, s_2, ..., s_{N_s})$$

Second order (conformal) phase transition at

$$T_c = 2/\ln(1+\sqrt{2}) \simeq 2.26...$$
 $\nu = 1$



Forget about details: if straight line, dataset is parametrized by a Pareto distribution

Emergence of scale-free network

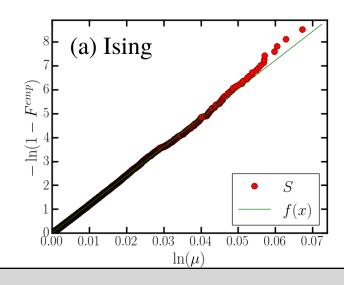
Hamiltonian

$$E(\vec{s}) = -\sum_{\langle i,j\rangle} s_i s_j,$$

Data configurations

$$\vec{s} = (s_1, s_2, ..., s_{N_s})$$

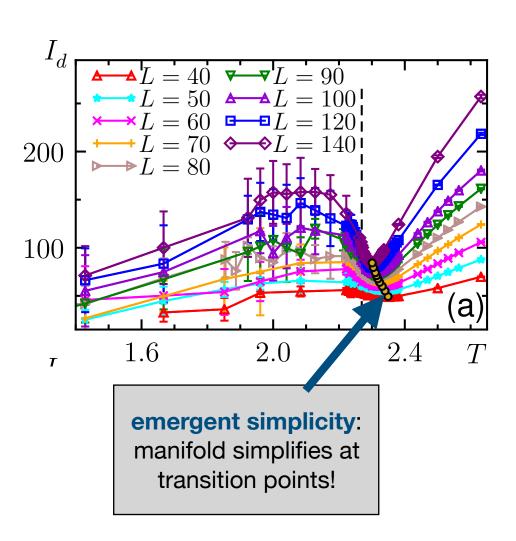
Second order (conformal) phase transition at



Forget about details: if straight line, dataset is

 $|T_c|$ First observation of scale free network in the present |c|context - those have widespread applications in many fields (neural networks, internet, etc.)

Intrinsic dimension: emergent simplicity



Intrinsic dimension: universal behavior

Universal collapse scaling from renormalization group

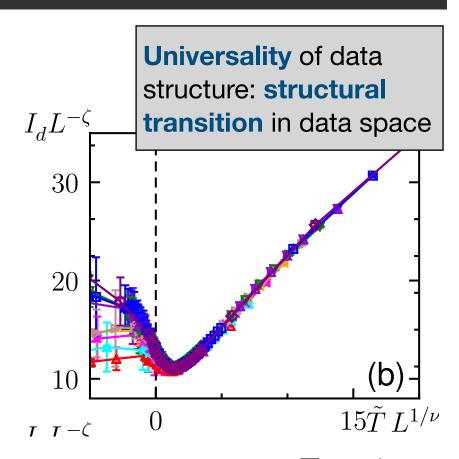
Scaling function

$$I_d = L^{\zeta} f(\xi/L)$$

$$\xi \sim (T - T_c)^{-\nu}$$

Second order (conformal) phase transition at

$$T_c = 2/\ln(1+\sqrt{2}) \simeq 2.26...$$
 $\nu = 1$



Free parameters: T_c, ν, ζ

$$T_c = 2.283(2), \nu = 1.02(2), \zeta = 0.410(5)$$

Review: A Pelissetto & E Vicari, Physics Reports (2002)

Intrinsic dimension: quantitative predictions

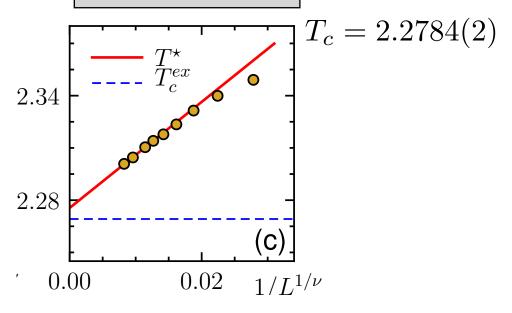
Universal collapse scaling from renormalization group

$$T^*(L) - T_c \sim \frac{1}{L^{1/\nu}}$$

Second order (conformal) phase transition at

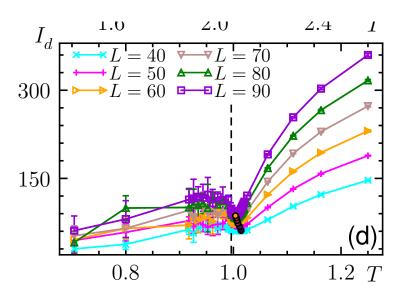
$$T_c = 2/\ln(1+\sqrt{2}) \simeq 2.26...$$
 $\nu = 1$

Useful to find critical temperature and exponents without any assumption on order parameters!

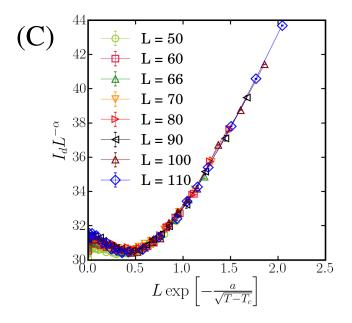


Kaleidoscope of applications

Same behavior for other second order and topological transitions



3-state Potts model



XY model

Main messages

Partition functions of classical many-body models remarkably describe scale free-networks

Such scale free-networks exhibit emergent simplicity at transition points

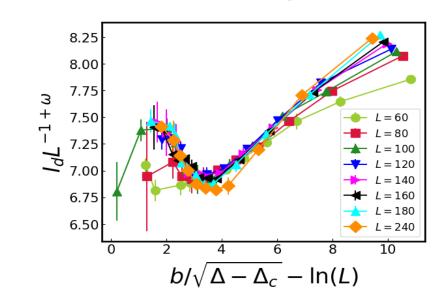
The data structures undergo a transition as long as the model does, with the same critical exponents!

What's next?

Application to quantum mechanics: Monte Carlo methods again

$\vec{X} = (|\alpha_0\rangle, ..., |\alpha_{i^*}\rangle, ...)$ $\vec{X} = (|\alpha_0\rangle, ..., |\alpha_{i^*}\rangle, ...)$ $|\alpha_{i^*}\rangle$ $|\alpha_1\rangle$ $|\alpha_0\rangle \rightarrow \vec{X} = (|\alpha_0\rangle)$

1D Heisenberg model



Also quantum structures seem to exhibit the same universal behavior!

What's next?

Other perspectives:

- experiments on quantum matter: working of a quantum computer and simulator
- variational Monte Carlo methods (first results with Jastrow unclear)
- reverse engineer our finding to discover universal data structures in, e.g., neural networks

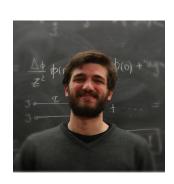
ICTP and SISSA

Adriano Angelone (-> Paris)

Saro Fazio

Tiago Mendes-Santos (-> MPIPKS Dresden)

Alex Rodriguez



Xhek Turkeshi

Thank you!

Mendes-Santos, Turkeshi, MDM, Rodriguez, Phys. Rev. X 11, 011040 (2021)

Mendes-Santos, Angelone, Rodriguez, Fazio, MDM, Phys. Rev. X Quantum 2, 030332 (2021)