D-Wave as a generator of structural models for order-disorder transitions in materials science

Rosa Di Felice

Departments of Physics and Astronomy and Quantitative and Computational Biology, University of Southern California, Los Angeles, USA

CNR-NANO Modena, Italy

difelice@usc.edu

With: Virginia Carnevali and Marco Fornari at Central Michigan University, Ilaria Siloi at USC

Prologue

The progress of computer power and integration and parallelization has greatly boosted discoveries in biology, chemistry, materials science and big-data fields of research

Can the same disciplines/fields take even more advantage from quantum computers?

Outline

• Introduction: quantum annealing and materials thermodynamics

QUBO formulations for materials phases and results

• Melting: amorphous silicon

Entropy stabilization: high-entropy alloys

Order-disorder transitions: perovskites

Summary

The generation of structural models for real materials requires the exploration of the Born-Oppenheimer surface, defined by the atomic coordinates, to identify the feasible stable structures as local minima of the energy landscape, and to decide which one is preferred at a particular temperature and pressure

I. Siloi, V. Carnevali, B. Pokharel, M. Fornari, R. Di Felice, *Quantum Mach. Intell.* 3, 3 (2021) V. Carnevali, I. Siloi, R. Di Felice, M. Fornari, *Phys. Chem. Chem. Phys.* 22, 27332 (2021)

Adiabatic quantum optimization

Solve using AQO

Find the ground state of the Ising Hamiltonian

$$H_{\text{Ising}} = \sum_{i} h_i \sigma_i^z + \sum_{ij} J_{ij} \sigma_i^z \sigma_j^z$$

using adiabatic interpolation from the transverse field (Farhi et al., 2000)

$$H(t) = A(t) \sum_{j} \sigma_{j}^{x} + B(t) H_{\text{Ising}} , t \in [0, t_f]$$

• Programming means finding the appropriate $\{h_i, J_{ij}\}$

Connectivity

Limitations on D-Wave

- Graph completeness
 - Minor embedding
 - D-Wave built-in function [J. Cai et al, ArXiv:1406.2741, 2014]
 - Truncation of data
- Values of Ising parameters
 - $-1 < h_i, J_{i,j} < 1$
 - Data normalization needed

MELTING: AMORPHOUS SILICON

Competition between short and long range order

Energy landscape exploration

Combinatorial complexity

ENTROPY STABILIZATION HIGH ENTROPY ALLOYS

Competition between energy and entropy

ORDER_DISORDER TRANSITIONS: AB0₃ PEROVSKITES

Competition between order and disorder

D-Wave as a structural model generator

PROTOCOL

FROM CRYSTAL STRUCTURE TO NETWORK

QUBO DESIGN

$$Q(x) = p_1 P_1(x) + p_2 P_2(x) + \cdots$$

$$Q(x) = 0$$
 Ground state

$$Q(x) \neq 0$$
 Excited states

EXCITED STATES have a PHYSICAL MEANING

STATISTICAL APPROACH

RUNNING the AMOUNT OF TIMES necessary to have the RIGHT STATISTICS

CLASSICAL SIMULATIONS

computational time limitation dependence on the initial conditions

Amorphous Silicon

Competition between short and long range order

Application to solar cells and disordered systems

Generating structural models for non-crystalline materials

Amorphous Silicon

Bonds length distribution in the crystal

Radial Distribution Function

AMORPHOUS

$$x = \{x_{i\alpha_n}\}$$

Silicon structural model as string of binaries: encoding #bonds and available bond lengths

GROUND STATE

$$Q(x) = 0$$

Length of a certain bond is unique

$$+\sum_{i,n}|\alpha_n-\alpha_c|x_{i\alpha_n}^2$$

How shrunk/ stretched the bonds are

$$+\sum_{n}\left(N_{\alpha_{n}}-\sum_{i}x_{i\alpha_{n}}\right)^{2}$$

How many bonds are not crystalline **EXCITED STATES**

$$Q(x) \neq 0$$

tuning p!

Structural models for Silicon

FILTERING EXCITATIONS

Binary strings that do not respect

constraints are filtered out a posteriori

AMORPHOUS

DETAILS

- Conventional cell with 8 atoms, 16 bonds
- 48 binaries, 408 couplings, 437 qubits

States

Structural models for Silicon

HOW MANY MODELS ARE FOUND BY DWAVE?

- distribution of models from DW close to theoretical one
- Increasing the statistics

OBSERVATIONS

DW as a quantum generator of structural models

Better resolution with improving statistics

General approach extendable to more complex cases

Non-crystalline bonds

Summary

Encoding stable and metastble states in the GROUND and EXCITED STATES OF A QUBO formulation

