

107° Congresso Nazionale SIF

16 Settembre 2021

XENON

THE XENON PROJECT: RECENT RESULTS, STATUS AND PROSPECTS

Pietro Di Gangi

INFN | Università di Bologna

digangi@bo.infn.it

XENON PROJECT

XENON1T RESULTS

OUTLOOK

XENONnT STATUS

- Direct DM search
 LXe TPC
- Detector evolution

- **XENON1T** experiment
- WIMP searches
- DEC discovery
- ER excess

- Larger TPC
- Neutron Veto
- Liquid Xe purification
- Rn distillation
- Science run

- WIMP sensitivity
- ER excess discrimination
- Other channels

THE XENON COLLABORATION

XENON PROJECT

XENON1T RESULTS

DIRECT DARK MATTER SEARCH

MILKY WAY GALAXY

DARK MATTER HALO

XENON PROJECT

XENONIT RESULTS

EARTH-BASED **EXPERIMEN**

INFN

16 September 2021

DIRECT DARK MATTER SEARCH

XE XENON

XENON PROJECT

LNGS

0 0

ũ

3600 m.w.e.

UNDERGROUN

EARTH-BASED EXPERIMENT

DIRECT DARK MATTER SEARCH

XENON PROJECT

XENONIT RESULTS

LNGS

UNDERGROUND

EARTH-BASED EXPERIMENT

DIRECT DARK MATTER SEARCH

700 t WATER TANK

MUON VETO

XENONIT RESULTS

DIRECT DARK MATTER SEARCH

8

INFN

16 September 2021

LXe TPCs LEGACY

BEST TECHNOLOGY SEARCHING FOR WIMP DARK MATTER

XENON

PROJECT

XENONIT RESULTS

XENONNT STATUS

XENONNT PROJECTIONS

INFN

THE XENONIT EXPERIMENT

Eur. Phys. J. C (2017) 77: 881

INFN

MUON VETO

- <u>] JINST 9 P11006</u>
- 700 t ultra-pure water
- 84 PMTs

TPC

- 2.0 t LXe target mass
- 8 248 PMTs <u>EPJ C75 11</u>

SERVICE BUILDING

- Cryogenic system
- GXe purification
- DAQ <u>JINST 14 (2019) 07</u>
- Slow control
- Kr distillation column
- LXe storage and recovery

Careful material selection for excellent radiopurity

è <u>EPJ C77, 890</u>

XENON1T @ LNGS (Hall B)

XENON1T RESULTS

XENONnT PROJECTIONS

WIMP DARK MATTER

XENONIT RESULTS

EPJ C (2020) 80:785 (analysis R&D)

TECHNICAL ANALYSIS PAPERS PRD 99, 112009 PRD 100, 052014

16 September 2021 07° Congresso SIF

INFN

WIMPS DIDN'T SHOW UP

WORLD LEADING CONSTRAINTS ON WIMP-NUCLEON INTERACTION

For WIMP masses in the range [0.1, 2) - (3, 1000] GeV/c²

XENONIT RESULTS

BACKGROUND

EXCLUSION LIMIT

THE RAREST PROCESS EVER

DISCOVERY OF DOUBLE ELECTRON CAPTURE IN 124Xe

Nature 568, 532-535 (2019)

Neutrino emission

Measured half-life: $(1.8 \pm 0.5_{stat} \pm 0.1_{sys}) \times 10^{22} \text{ yr}$ ~10¹² times larger than the age of the Universe

The rarest process ever directly observed!

WR

Expected signature: (64.3 ± 0.6) keV mono-energetic peak

Observed peak of 126 ± 29 events at (64.2 ± 0.5) keV

4.4 σ Discovery

significance

XENONNT

PROJECTIONS

XENON1T RESULTS

XENONNT

INFN

Electron capture

2021

September

9

EXCITING MYSTERY FROM ERS

NEW PHYSICS OR UNEXPECTED BACKGROUND?

140

120

80

60

40

20

events/(t·y·keV)

 $- H_0: B_0 + {}^3H$

 $H_1: B_0 + {}^3H + axion$

10

15

Energy [keV]

Phys. Rev. D 102, 072004

Solar axions + (unconstrained) ³H fit

.....

.....

³H

20

25

ABC axion

⁵⁷Fe axion

----- Primakoff axion

XENON1T RESULTS

Estimated ³H/Xe concentration in XENON1T

3.2 σ TRITIUM BACKGROUND

³ Fitted concentration: (6.2±2.0) × 10⁻²⁵ mol/mol ³H/Xe

- ³ We don't expect that much ³H from liquid purity
- Very difficult to confirm or exclude such a tiny abundance

2

3.4 σ SOLAR AXIONS

- Solution \Rightarrow Non-null coupling to electrons \rightarrow ABC and/or Primakoff Strong tension with astrophysical constraints
- $^{\otimes}$ Axions+³H favoured over ³H-only at 2.1 σ

3.2 σ NEUTRINO MAGNETIC MOMENT μ_{ν}

 12 μ_{ν} = [1.4, 2.9] × 10⁻¹¹ $\mu_{\rm B}$

- $\approx \mu_{\nu}$ > 10⁻¹⁵ would imply neutrinos to be Majorana fermions
- Tension with astrophysical constraints

3.0 σ **BOSONIC DARK MATTER**

- Including pseudo-scalar (ALPS) and vector (dark photons) bosons
- Most restrictive constraints to date set

XENON1T @ LNGS (Hall B)

FAST UPGRADE TO XENONNT

INSTALLATION COMPLETED DURING THE 2020 LOCKDOWN

UPGRADES | NEW LARGER TPC

XENON1T RESULTS

and a summer of the Ala

XENONNT PROJECTIONS

TPC DATA - ^{83m}Kr CALIBRATION

UPGRADES | NEW LARGER TPC

DETECTOR PERFORMANCE

- Photon detection efficiency: ~0.17 PE/photon (0.14 in XENON1T)
- Energy resolution (@ 41.5 keV): ~7.6% (8% in XENON1T)
- S2 resolution: ~15.1% (13.7% in XENON1T)

PMTs PERFORMANCE

^{xa} 485 of 494 used in the analysis

0.5 1.0

Rate [A.U.]

Quantum efficiency: 34% avg.

S B

XENONIT RESULTS

XENONNT STATUS

▼ NR bkg

Neutron background suppression

- 0.2% Gd-doped water Cherenkov detector
- 120 PMTs
- Highly reflective volume
- 87% neutron tagging efficiency (expected)

XENONnT @ LNGS (Hall B)

UPGRADES | NEUTRON VETO

INFN **U-TUBES** New calibration system Sources displaced in different radial and azimuthal positions nVETO Top View N 0 O [cm -30 m] -60 Time [ns] 300 **CALIBRATION DATA** + -90 100 Gamma source (²³²Th) -120 0 200 -150 Neutron source (²⁴¹AmBe) 60 02 80 0 +1cm 00000 000000 60 100 30 -30 -60 -30 00000 00000 YIcmj y [cm] Number of Hitlets per channel - Run 013213 60 0 0 00000 000000 400.00 .0000 00000 35000 -100 40 30000 00000 00+00 25000 -200 20 104 20000 15000 2.2 MeV -300 10000 n-capture bin [Hz] 5000 101 -100 100 200 4.4 MeV -300 -200 0 300 x [cm] 2020 2100 Channe gamma Number of hitlets Run 013213 Hitlet Matrix Rate 100 2120 С 2100 2080 Area [pei 1.6 1.4 + Residuals 5 2060 1.2 P 1 0.8 0.6 LW 2040 2020 09 9 10 11 12 13 14 15 2000 100 200 120 150 20 80 100 50 Time [ns] Event area [PE]

NEUTRON VETO CALIBRATION DATA

6 September 2021

SIF

07° Congresso

UPGRADES | LIQUID Xe PURIFICATION

▲ Purity

INFN

- Improve signal detection and target purity
- High purification flux (~1000 slpm) to remove electronegative impurites
- Ultra-low Rn emanation filters
- >20 ms electron lifetime reached

Compared to XENON1T:

- x1.5 larger drift length (1.5 m vs 1 m)
- x30 better electron lifetime (20 ms vs 0.6 ms)
- **x3** better cathode events survival (>90% vs 30%)

XENON PROJECT

KENON1T RESULTS

XENONNT STATUS

UPGRADES | RADON DISTILLATION

ER background reduction

- Dedicated Rn cryogenic distillation column
- [©] 1 μBq/kg ²²²Rn level (XENONnT goal)
- In XENON1T was
 13 μBq/kg (science run)
 4.5 μBq/kg (latest R&D run)

- Equilibrium concentration by gas extraction only: 1.72 μBq/kg
- Planned future liquid extraction: factor ~2 more efficient

XENON1T RESULTS

XENONNT STATUS

16 September 2021

Congresso SIF

07°

XENONNT SCINCE RUN ON

10

XENON PROJECT

XENON1T RESULTS

XENONNT PROJECTIONS

ER BAND CALIBRATION (220Rn)

NR BAND CALIBRATION (241AmBe)

- Preliminary energy calibration
- Internal ER calibration: ²²⁰Rn diffused in LXe
- External NR calibration: ²⁴¹AmBe in different
 U-tubes positions
- Science data taking is ongoing

XENONNT PROJECTIONS | NR CHANNEL

WIMP SEARCHES JCAP 11 (2020) 031

September 2021

9

SIF

Congresso

07

INFN

 1.4×10^{-48} cm² at 50 GeV/c² with 20 ty exposure

XENONnT PROJECTIONS

Compared to XENON1T:

- Background further reduced by factor ~6
- >1 order of magnitude improvement of sensitivity

XENONnT can discriminate Axions from Tritium with few months of data

XENONnT PROJECTIONS

DARK MATTER MODELS

- WIMP models
- Light dark matter
- **Mirror dark matter**
- Luminous dark matter etc...

SOLAR NEUTRINOS

8B CEvNS

XENONNT PROJECTIONS | MORE

MANY OTHER PHYSICS CHANNELS TO EXPLORE

- pp elastic scattering
- Magnetic moment etc...

BEYOND SM

- **Neutrinoless DEC**
- Neutrinoless doublebeta decay etc...

ASTROPHYSICS

- Supernova neutrinos
- **GW** multi-messenger

FIRST XENONNT RESULTS COMING SOON

www.xenonexperiment.org xe-pr@lngs.infn.it

XENON

facebook.com/XENONexperiment

instagram.com/xenon_experiment

twitter.com/xenonexperiment

INFN

September 2021

6

ົດ

ongres