SIF Conference, 13 Sep 2021 **Martina Gerbino - INFN Ferrara**

107° CONGRESSO NAZIONALE

The CMB route to neutrino properties: Current status and future prospects

Neutrinos and Cosmology

Neutrinos are essential ingredients of the Standard Cosmological Model **Pioneering bounds on neutrino properties from Cosmology well before lab**

$$\Omega_{\nu}h^2 = \frac{\Sigma m_{\nu}}{93.14\,\mathrm{eV}}$$

 $\Omega_{\nu}h^2 < 1$ $\Omega_{\nu}h^2 < \Omega_m h^2$

Gershtein-Zeldovich (1966) Cowsik-McClelland (1972)

(Stringent) bound on the mass sum required not to over close the Universe

 $N_{\nu} < 4$

Schramm&Kawano (1989) **Olive+ (1990)**

(Stringent) bound on the family number required not to spoil BBN

		Ne	eutrino
$T \sim 1 \text{MeV}$			
	Weak int. rate = Hubble rate	ete-annihilation	Decouple and ot clusteri
Scale facto	r'	a'	increases

Martina Gerbino

cosmology tivistic Non-Relativistic $T \sim m_{\nu}$

Temperature 'T' increases

Distorsions due to non-inst decoupling radiative corrections, flavour oscillations Dolgov, 1997, Mangano+, 2005 Bennett+2020, Froustey+2020, Akita+2020

Scale factor 'a' increases —

Martina Gerbino

Temperature 'T' increases

Neutrino imprints on the CMB

Martina Gerbino

SIF2021

Martina Gerbino

Current limits on the mass sum

Planck2018

Neutrino stability over cosmic times

Mass bounds relaxed for neutrinos decaying when non-relativistic and close to recombination Updated and improved bounds expended with more careful treatment (Barenboim+,2021)

Martina Gerbino

Martina Gerbino

ACT Collaboration (Aiola+), 2020 SPT Collaboration (Dutcher+, Balkenhol+), 2021 VI 2018 Planck collaboration,

Light sterile in cosmology

Hagstotz+, 2020; Gariazzo+, 2020

Martina Gerbino

Neutrino non standard interactions

Neutrino self-interactions

Forastieri+,2019; Kreisch+,2019; Brinckmann+,2021; ...

Neutrinos interact only via weak interactions with other particles What if new interactions are yet to be discovered?

$$\mathcal{L}_{SM} = -2\sqrt{2} G_F \left[\left(\overline{\nu}_e \gamma^\mu P_L e \right) \left(\overline{e} \gamma_\mu P_L \nu_e \right) + \sum_{X,\alpha} g_X \left(\overline{\nu}_\alpha \gamma^\mu P_L \nu_\alpha \right) \left(\overline{e} \gamma_\mu P_X e \right) \right] \right]$$
$$\mathcal{L}_{NSIe} = -2\sqrt{2} G_F \sum_{\alpha,\beta} \varepsilon^X_{\alpha\beta} \left(\overline{\nu}_\alpha \gamma^\mu P_L \nu_\beta \right) \left(\overline{e} \gamma_\mu P_X e \right) .$$

Neutrino-electron non-standard interactions de Salas+,2021; Mangano+,2006; ...

Cosmology can place complementary and competitive bounds on this NS properties to laboratory searches.

With current data, no hint for deviations from the SM.

What next in neutrino cosmology

A new generation of ultimate cosmological surveys is approaching: Simons Observatory, Euclid, LiteBIRD, CMB-S4, DESI, LSST, SPHEREX, **SKA** **Does it mean that we are moving:**

Towards the first detection of the neutrino mass scale?

 $\sigma(\Sigma m_{\nu}) = 0.02 \,\mathrm{eV}$

2) Towards the first probe of the physics of neutrino decoupling, and of **BSM content at very early times?**

$$\sigma(N_{\rm eff}) = 0.03$$

Martina Gerbino

Towards the mass sum: synergy with lab

Martina Gerbino

 \bullet

Several interesting scenarios are possible (I am being sketchy here):

Concordant signals from both cosmology and 0nu2b. Neutrinos are Majorana. Hierarchy might be determined or not.

Signal from cosmology with Mnu<0.1 eV, no signal from 0nu2b. Hierarchy is normal. Majorana/Dirac undetermined.

Signal from cosmology with Mnu > 0.1 eV, no signal from 0nu2b. Neutrinos are Dirac. Hierarchy is undetermined.

No signal from cosmology, signal from 0nu2b. OR we see discordant signals. Neutrinos are Majorana. New physics? E.g. BSM neutrino interactions?

Courtesy of M. Lattanzi

Challenges ahead

- Theory: evolution of cosmic structures at late times (non linear regime)
 - Instrument: extreme control of systematics required
- Statistics #1: advanced tools to efficiently combine different (correlated) dataset
 - Statistics #2: advanced tools to quantify statistical preference and/or possible bias

The community is aware of these challenges and has already started work against them!

Contributions from CosmoFe:

S. Giardiello T. Brinckmann

S. Alvi

Conclusions

- Cosmology provides competitive and complementary bounds to neutrino (standard and non-standard) properties
 - At present, no evidence for non-standard neutrino behaviour over cosmological times and scales
 - Future surveys (~10years) will reach the required sensitivity to allow for groundbreaking results in neutrino physics
 - Need to face non-trivial challenges with a clear roadmap
 - Synergy with laboratory searches will corner neutrino unknowns

