

Review sulle misure di neutrini ai fasci e risultati di T2K

Lorenzo Magaletti (Politecnico di Bari & INFN Bari) Iorenzo.magaletti@ba.infn.it

> 107° Congresso Nazionale della Società Italiana di Fisica 15 Settembre 2021

Sources of neutrinos

Neutrinos are almost everywhere: **Particle Physics** Ģ **Astrophysics** Cosmology Nuclear physics 101 <u>v</u>e e⁻ in mb) 10⁻⁴ SuperNova 10 Reactor Ϋ́ **10**⁻¹⁰ 'ə Accelerator Cross Section ($\overline{\nu}_{
m e}$ 10⁻¹³ Terrestrial Cosmic 10⁻¹⁶ **Atmospheric** Solar **10**⁻¹⁹ BNC Super-K 10-22 F LBNE MINERV IceCube/PINGU PINGU ANTARES LBNE ANITA E 10⁻²⁵ NO/ICAL ARA/ARIANNA r1. SciNC **KM3NET** -Big Bang EVA 10-28 Hyper-k NuMAX 10⁻³¹ . 1 . 1 10¹⁶ 10¹⁰ 10¹² 10¹⁴ 10-2 10² 10⁶ 10⁸ 10¹⁸ 10-4 10⁴

Neutrino Energy (eV)

Solution of sources, wide range of energies Astrophysics

Need wide spectrum of experiments and technologies!

This talk will be focused on the recent results from long baseline (LBL) neutrino oscillation experiments.

In particular I will discuss the T2K neutrino oscillations results!

Mixing of three neutrinos

Breakthrough Prize 2016

T2K & K2K	KamLAND	Daya Bay	SNO	Super-Kamiokande
Δm^2_{32}	Δm^2_{21}	Δm^2_{31}	Δm_{21}^2	Δm^2_{32}
θ_{23} θ_{13}	θ_{12}	θ_{13}	θ_{12}	θ_{23}

.... "For the fundamental contributions to the discovery of neutrino Oscillation"

Neutrino physics development

Recent results from LBL neutrino oscillations experiments

Long-Baseline Facilities Across the Globe

What can be measured from v_{μ} disappearance and v_{e} appearance

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \Delta m_{31}^2 \frac{L}{4E}$$

Precision measurement of θ_{23} and Δm^{2}_{31} CPT test with anti-neutrino mode $(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{\mu})$

$\mathbf{I}_{\mathbf{I}\mathbf{3}}$ dependence of the leading term

 $\mathbf{\Phi}$ $\mathbf{\theta}_{23}$ dependence of the leading term ($\mathbf{\theta}_{23}$ =45° or $\mathbf{\theta}_{23} \ge 45$ °?)

 \mathbf{P} CP odd phase delta: asymmetry of probabilities $P(v_{\mu} \rightarrow v_{e}) \neq P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$ if sin $\delta \neq 0$

Matter effect: V_e (\overline{V}_e) appearance enhanced in normal (inverted) mass hierarchy

8

Learning from V_e (\bar{V}_e) appearance

· •

T2K-NOvA disappearance samples

steady increase in beam power: 515 kW

T2K-NOvA disappearance parameters

T2K-NOvA appearance samples

New results and comparison with other experiments

All values of δ_{CP} allowed at 90% CL

Preference for normal hierarchy at 1.0σ

- Preference for upper octant at 1.2σ
- $\delta_{CP}=\pi/2$ excluded at >3 σ in inverted hierarchy

T2K-NOvA bi-probability plots

T2K has the world leading measurement of δ_{CP}

Future LBL

neutrino oscillations experiments

The Deep Underground Neutrino Experiment (DUNE)

DUNE 1.5 km deep in Home Stake Mine

Deep underground location

- 70 kton Far Detector (FD)
- Multiple technologies for the Near Detector (ND)
- MW-scale wide band neutrino beam
- FD Physics date in late 2020s
- Details of timeline will be finalized after project baselining (expected this year)

Very Rich Physics Program

- CP Violation
- Neutrino Mass Hierarchy
- Precision measurements of neutrino oscillation parameters
- Supernova & Astrophysics
- Nucleon Decay (e.g. $p \rightarrow K^+ \nu$)
- Many BSM searches

Hyper-Kamiokande

19 countries, 93 institutes,~440 people as of November2020, growing

DUNE and Hyper-K sensitivities

SBL neutrino program in US

Light sterile neutrinos?

Several anomalies have been found in short baseline experiments (SBL), which cannot be explained in the 3-flavor Scenario.

The new hypothetical eigenstate must be supposed to be sterile, i.e., **a** singlet of the standard model gauge group.

Minimal extension (3+1): assume a mass eigenstate v_4 weakly mixed with the active neutrino flavors (v_e , v_μ , v_τ) and separated from the standard mass eigenstates (v_1 , v_2 , v_3) by a O(1eV²)difference.

Туре	Channel	Significance
DAR accelerator	$ar{ u}_{\mu} ightarrow ar{ u}_{e}$	3.8 σ
SPL accolorator	$ u_{\mu} ightarrow u_{e}$	4.5 σ
SDL accelerator	$ar{ u}_{\mu} ightarrow ar{ u}_{e}$	2.8 σ
Source – e capture	ν_e disappearance	2.8 σ
β decay	$ar{ u}_e$ disappearance	3.0 σ
	TypeDAR acceleratorSBL acceleratorSource – e captureβ decay	TypeChannelDAR accelerator $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ SBL accelerator $\nu_{\mu} \rightarrow \nu_{e}$ $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ Source - e capture ν_{e} disappearance β decay $\bar{\nu}_{e}$ disappearance

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s_{1} 1} & U_{s_{1} 2} & U_{s_{1} 3} & U_{s_{1} 4} \end{pmatrix} \end{bmatrix} \begin{bmatrix} \vartheta_{14} \\ \vartheta_{24} \\ \vartheta_{34} \end{bmatrix}$$

FNAL Short Baseline Neutrino (SBN) Program

Program aimed at definitely solving the "sterile neutrino puzzle" by exploiting:

- $\frac{1}{2}$ the well characterized FNAL Booster v beamline;
- three detectors based on the same liquid argon TPC technique.

SBN Goals

- MicroBooNE: Understand the nature of the MiniBooNE "low energy" excess anomaly, using the same beam.
- SBND + ICARUS: Search for short baseline oscillations both in appearance and disappearance channels.
- Lay the ground for future long baseline program (LAr-TPC technique and v-Ar x-sec at energies relevant to DUNE)

Unique capability to study appearance and disappearance channels simultaneously.

More details in Falcone's talk

At the begin of the new decade, the puzzle of neutrino oscillations is getting clearer

Conclusions

- The T2K experiment has the world leading result for δ_{cp} measurement (excluded 35% of δ_{cp} values at 3σ)
- Both T2K and NOvA data prefer upper octant θ₂₃ and Normal Ordering Masses
- \neq Now we are at the beginning of the large θ_{13} era
- New results on δ_{cp} and mass ordering are expected from T2K (with beam and near detector upgrade) and NOvA with full statistic (T2K+ NOvA joint analysis)
- Expected to reject conserving values at 5σ from the new generation experiments DUNE and Hyper-Kamiokande (~2027)

The SBL neutrino program at FNAL can shed a light on the mystery of sterile neutrinos

Lots of exciting work and results to come in the next future!