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PET Imaging

BACKGROUND

Detectors provide us with 3 kind of
information

* Photons hit point
* Timing of the hits
* Energy of the photons
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WHY NOT INCREASE COUNTS?

X - Ray PET

On only during data taking Radiation for all biological/physical half life

Collimated to region under study  Radiation to the whole body
Positron energy
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Common tracers dosimetry:
18F-FDG: 1mSv/mCi

Activity Dose

Tracer (MBq) (*) (mSv)

F-18 FDG 3.7 /kg 571
C-11 colina 400 18
C-11 metionina 740 3.7
Ga-68PSMA 1 822 /kg 3.08
Ga-68 DOTA 200 49




PET Imaging

POISSON NOISE

A common issue in emission tomography

In the measurement space

« The noise cannot be modelled as additive: std(1) = V1

* It varies by many orders of magnitude

* It varies abruptly along structures contours

» The absolute variance is higher where the signal is higher
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Poisson Noise

TOY EXAMPLE

A uniform circle (activity 1)

A target (12 mm diameter) with 4:1 contrast
with background

Planar imaging (not tomography) :

What happens if you keep the same number
of counts and make the detector finer?
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Poisson Noise

SPATIAL RESOLUTION AND NOISE

It's worse than it seems




Poisson Noise

SPATIAL RESOLUTION AND NOISE

Increase counts quadratically

3.5 mm 3 mm 2.5 mm 2 mm




Poisson Noise

TOMOGRAPHIC PROBLEM

It gets even worse

HTHA

Analytical recon:
high-pass ramp filer

| Backprojection:

Forward
projection

[ Ramp filter! }

— T ;

Noise is strongly amplified at high
frequencies

Noise in detector
sinogram space?
i




Tomographic Noise

CONSTANT COUNTS

3.5 mm 3 mm 2.5jmm




Tomographic Noise

NOISE: TAKE AWAY MESSAGE

Summary

* The joint effect of the Poisson statistics and of tomographic noise makes
achieving high resolution extremely hard.

* Need to scale the counts more than quadratically with resolution (in 2D....)
» Sensitivity is the n° 1 design desire for PET
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NEW HARDWARE DEVELOPMENTS

Timing Resolution

Energy Resolution
Extended Axial FOV




TOF principle

Conventional

New Hardware Developments

TITOLO SEZIONE

Timing Resolution

uniform probability on
line-of-response

At
AX:CT

-

500 ps > 7.5¢cm

Current commercial systems

* Mostly limited by crystal thickness
* Vendor A: 25 mm - 400 ps
* Vendor B: 20 mm = 250 ps
* (20 mm : 66ps at the speed of light)

* SiPM and LYSO are pushing the
limit of timing resolution




BENEFITS OF TOF

 Reduces noise  Noise Reduction:

* Provides redundant information . [.D Doss = V2m_c ps
off =

« Makes reconstruction much more Derr v8in22

robust towards errors in the
calibration of detector pairs,
including attenuation
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TOF AT CONVERGENCE

Constant counts
Different timing resolution
Reconstruction at convergence
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EXTENDED AXIAL FOV
Getting More Counts

L A

» Organ specific geometric efficiency:
. %atan (5) (fraction of solid angle)

¢ + + #0
D
 Whole body efficiency:
ol & o E—
I I B

* 2m system gain:
o Adult WB: 42x
* Pediatrics WB: 20x
* Cardiac: 5x
* Brain: 5x

Poon et al, Phys Med Biol, 57:4077-4094,
2012




O min 2 sec

WHAT TO DO WITH 40X MORE COUN

Fixed dose: SNR improved by 6.5x

« Better images
* More spatial resolution
* Dynamic imaging (down to 0.1 s frames!)

Long dynamic range
* Acquire for 5 half lives!

Fast acquisitions
* No motion artefacts

Ultra-low dose acquisitions
* Inject 1/40 x -> 0.2 mSv scan / less than a flight!



CHALLENGES
Why now?
Explorer HW: Explorer Recon:
e Crystals N°: ~6 10° * 9 Recon servers, each:
. « 96GB RAM
* SIPMs: 54k + 2100 Tesla GPU
* Lines of Response N°: 92 x 107 * 2 Xeon 6126 CPU

e 10 min scan:
« 100 GB Data, 15 Minutes Recon

* 60 min dynamic:
« 2 TB data, several hrs




EXISTING SYSTEMS

United Imaging explorer: 2 m scanner (research
only?)

PennPET Explorer: 1.4 m scanner (not
commercial)

Commercial systems: 106 cm

» Sensitivity: ~¥5x a 25 cm scanner / 10x a 15 cm
one

« Can acquire eyes to thigh in 1 steps!
* Dynamic scans always include the aorta

Coronal

PET MIP

1 bed position / 15 sec per bed



REGULARIZED RECONSTRUCTION

Early Stopped OSEM is not enough




Early Stopping

WHY DO WE STOP EARLY?

OSEM-recon proprieties

* Recon time
* Visually less «noisy»
 Mathematically:
Akt = [HTWy]diag(A*) with
W = diag(1/HA*)
1. Hot contrast converges faster than cold
2. Larger background = Slower convergence
3. Smaller signal = Slower convergence

Presotto, Luca, Valentino Bettinardi, and Elisabetta De
Bernardi. "A Simple Contrast Matching Rule for OSEM
Reconstructed PET Images with Different Time of Flight
Resolution.” Applied Sciences 11.16 (2021): 7548.




IMPACT OF EARLY STOPPING ON QUANTIFICATION

Same field of view, 2 identical signals in air and within a hot background.

20 it. 40 it. 100 it.
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EARLY STOPPING: VISUAL NOISE

ML solution

Reference:
-
ot LI, 3
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Gaussian =

smoothing &




REGULARIZATION

Can we get to convergence while limiting noise?

» Unconstrained image reconstruction with resolution modelling does not
have a unique solution

 Why don’t we add a constraint?

* Basic implementations are known not to work well
« Suppose we maximize L(y,A) + BA'RA?

* E[A] =[H'D(Y/y)H + BR]I"*H'D(Y/y )HA'"¢

Spatial Resolution Properties of Penalized-
Likelihood

Image Reconstruction: Space-Invariant Tomog
Fessler & Rogers, IEEE TMI, 1996




REGULARIZATION

How we can get to convergence

In a Poisson experiment more counts = Higher variance (even if lower
relative error).

In PET «signal» is «<hot» = Penalize high variance = Suppress signal!!
Solution

Penalize relative differences

Weight regularization based on attenuation

Nuyts, J., Beque, D., Dupont, P., & Mortelmans, L. (2002). A
concave prior penalizing relative differences for maximum-a-
posteriori reconstruction in emission tomography. IEEE
Transactions on nuclear science, 49(1), 56-60.




REGULARIZATION

What if we don’t want to stop early?

Ref Quadratic
€ penalty High
. ] . . strength
Variance is proportional to activity o & ! ‘
Suppress variance /
Suppress hot signals! "
Solution Relative Quadratic |
difference prior penalty].ow ~

Penalize relative differences
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CLINICAL EXAMPLES
Rel Difference + TOF TOF 56 Up.
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Normal Weight Patients

Arms downs

Hepatic lesions (low contrast)

Large lesions

CLINICAL EXAMPLES
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CLINICAL EXAMPLES
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ARTIFICIAL INTELLIGENCE DENOISING




Artificial intelligence denoising

CONVOLUTIONAL NEURAL NETWORKS




Artificial intelligence denoising

AMYLOID PET DENOISING

Standard U-NET with residual
approach

40 pts (32/8 train/val, 5 fold xVal)

Output: Standard acqg (20 min, 300
MBq)

Input: 1/100 of the events + mpMRI
« (3 MBqor 12 s acquisition)

Chen, Kevin T., et al. "Ultra—low-dose 18F-florbetaben
amyloid PET imaging using deep learning with multi-contrast
MRI inputs.” Radiology 290.3 (2019): 649-656.

— 3x3 Conv-BN-ReLLU — 2x2 Max-Pooling — 2x2 Up-Sampling e Addition

— 1x1 Cony

48 16 16

PET+MR multi- Encoder layers Decoder layers Synthesized
contrast input PET
Figure 1: A schematic of the encoder-decoder convolutional neural network used in this work. The arrows denote computational

operations and the tensors are denoted by boxes with the number of channels indicated above each box. Conv = convolution, BN =
batch normalization, RelU = rectified linear unit activation.




Artificial intelligence denoising

RESULTS

Amyloid PET Denoising

T1 MRI Full-dose PET PET+MR model PET-only model Low-dose PET

Tw/bgy

LYLILYEY

Figure 4: Amyloid-positive PET image in a 58-year-old male patient with Alzheimer disease, with the T1-weighted MR im-
age (leff) shown as reference. The region within the red box in the images in the top row is enlarged and shown in the bottom
row. The synthesized PET images show significantly reduced noise compared with the low-dose PET images, while the images
generated from the PET+MR model were superior in reflecting the underlying anatomic patterns of the amyloid tracer uptake
compared with the images generated from the PET-only model.

44+06 40406 3.2¢06 1.3+0.5
100
= 1
80
70
60
50
40
30
20
10
- F—
Full-dose PET+MR PET-only Low-dose
1 m2 m3 n4 m5

Figure 6: Clinical image quality scores (1 = uninterpretable/low,
5 = excellent/high; mean scores and standard deviation of all read-
ings presented at top of each bar) as independently assigned by the
two readers.

Percent of Cases

Chen, Kevin T., et al. "Ultra—low-dose 18F-florbetaben

amyloid PET imaging using deep learning with multi-contrast

MRI inputs." Radiology 290.3 (2019): 649-656.




Artificial intelligence denoising

FDG CARDIAC PET DENOISING

Standard U-NET
Input: PET + CT
Note: fully 3D (400M parameters) ‘[ il .11’11 [ mm } [ } [ . Wﬂ

ﬁ et L ey U
Training: 168 patients (112/28/28) -

e b e s e e e S Nt

. : g Rl tp g P

C O u n t S r e d u Ctl O n : 1 O% ’ 1 % Zggirl(f;f:g:;r;/uﬁzels(p) applied in the convolution (Conv) layers and the percentage shown below each block represents the

FU” StatiStiCS ImageS/ Gated |mageS Ladefoged, Claes Nghr, et al. "Low-dose PET image noise reduction

using deep learning: application to cardiac viability FDG imaging in

1 1ctti patients with ischemic heart disease." Physics in Medicine &
300 M Bq 10 min acquisition Biology 66.5 (2021): 054003.




Artificial intelligence denoising

RESULTS
FDG Cardiac PET Denoising

1% Al 10%
Ext 15 13 11
LVEF 20 20 22
EDV 237 306 311
ESV 190 246 243

Ladefoged, Claes Nghr, et al. "Low-dose PET image noise reduction

-
"O()“ using deep learning: application to cardiac viability FDG imaging in
LN ) patients with ischemic heart disease." Physics in Medicine &

Biology 66.5 (2021): 054003.



Artificial intelligence denoising

ADVANCED METHODS: CYCLE GAN

Training process Testing process

* GAN learn the noise pattern best L] © .

* Cycle GAN do not need paired training é I % > é ] .
examples 2 | [\ y

* Potentially poorer quantitative % == %

performance? . .
Training: 85 oncological pts (60/15/10) ég
Compared with standard Res-UNET :

Sanaat, Amirhossein, et al. "Deep learning-assisted ultra-

fast/low-dose whole-body PET/CT imaging." European Journal
of Nuclear Medicine and Molecular Imaging (2021): 1-11.CC




Artificial intelligence denoising

RESULTS
Advanced Methods: Cycle GAN

a Zone 1 (Brain) C Zone 2 (Neck+Trunk)
100 426 100 4.78 3.08 3.88 16 SUV

80 80 - .
60 60
40 40
20 20 1

0 0 ] -

RNET CGAN RNET CGAN

luninterpretable Epoor adequale mgood mexcellent luninterprelable Ipoor adequate mgood mexcellent

b Zone 1 (Brain) d Zone 2 (Neck+Trunk)

100 100
80 80
60 60
40 40
20 20 I I

0 0 0 Suv
RNET CGAN RNET CGAN
Fig.2 R = Failed = Accept mFailed mAccept ference FD

images,

Sanaat, Amirhossein, et al. "Deep learning-assisted ultra-

fast/low-dose whole-body PET/CT imaging." European Journal
of Nuclear Medicine and Molecular Imaging (2021): 1-11.CC




CONCLUSIONS

Exciting new times!




Conclusions

WHERE DO WE GO?

* Image
» Better

« Impro New era for Positron
b Emission Tomography?

o Artifici
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Questions?

Email: presotto.luca@outlook.it

Luca Presotto, PhD
Medicina Nucleare, IRCCS Ospedale San Raffaele, Milano
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Tomographic Noise

CUBIC COUNT INCREASE

0.4

—Planar

0.35 —Tomo |1

Constant counts
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ENERGY RESOLUTION

» Scatter is the highest confounding factor
* Up to 40% of non-random coincidences for systems with 10% energy resolution

* Research on narrowing the energy window
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* L'NPS & mal definito ma... Misuriamolo in un rettangolo

centrale del fantoccio uniforme
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« Without regularization the image is way too noisy
* What do we expect from maximizing L(y,A) + BA'RA?
* E[A] = [H'D(}/y,)H + BR]"'H'D(Y/y,)HA e

* First Huge problem!! < y; >oc A; =»The more counts a pixel has the higher
the influence of the penalty (whatever R we use...)

« Second problem: H includes attenuation correction factors. Which vary by
a factor ~100 for different sinogram bins

* Third problem: the more counts we have the more our penalty acts!

« Any Bayesian-like regularization we can come up with does not satisfy our
requests for a clinical reconstruction!!!
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« [HT"H] lowpass filter with varying
TOF

* Frequencies suppressed here have
noise enhanced during
reconstruction

3
10

L |~ 80ps

- | ——-250 ps
| |—— 400 ps
| |7 ©650ps

~ "~ "non TOF

10
Freq. (/o




TOF EFFECT ON POISSON STATISTICS

Poisson Likelihood Hessian diagonal: };; Clz]% (Vi = DcijA+1i+s;)
* The fewer counts the steeper the curvature l
* The better the TOF the fewer the counts “related to pixel j ”

* The timing coordinate, at good CTR, constrains results much more than the “tomographic”

part
o JSTD __ D
oTOF Defy
Pro: Con:
» Extremely robust to inconsistencies * Very sensitive to time-critical corrections
* Normalization/dead time * Timing coordinate
» Attenuation * Timing resolution

« Randoms become negligible » Scatter




EXAMPLE OF REGULARIZATION STRATEGIES

" ML solution with
& ) i
i Gaussian filter
Contrast: 2,3, 4, 6 5 3 i

Diameter: 45 cm

,-.a-':.i ,.‘":'-"__ﬂ:: L ‘ ‘ .!*l-'_\_"“ _. .' e
Attenuation: Water i _ el

Single noise realization

-

Total Variation « - R.e lative

(L2) > - differences and 3
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CLINICAL IMPLEMENTATION

OSEM Rel. Diff
Diff
- L .
. B
. L]
28 mm cold sphere
0.9
08r
=
3 0.7}
O
(i
O
06
jo - &-non-TOF OSEM
' —e—non-TOF PL
05} ¥ — & - TOF OSEM
& —&—TOF PL
1.5 2.0 2.5 3.0 3.5

Background variability (%)

TOF TOF-Rel.
- S .« .
- L
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Ahn, S., Ross, S. G., Asma, E., Miao, J.,, Jin, X, Cheng, L., ... &
Manjeshwar, R. M. (2015). Quantitative comparison of OSEM and
penalized likelihood image reconstruction using relative difference
penalties for clinical PET. Physics in Medicine & Biology, 60(15), 5733.




CLINICAL IMPLEMENTATION

OSEM Rel. Diff TOF TOF-Rel. Diff

-5 s -5 s (g/ml)
4 4
$ % S % °

0

Ahn, S, Ross, S. G., Asma, E., Miao, J., Jin, X, Cheng, L., ... &

Manjeshwar, R. M. (2015). Quantitative comparison of OSEM and
penalized likelihood image reconstruction using relative difference
penalties for clinical PET. Physics in Medicine & Biology, 60(1 302233




EXAMPLE: WRONG ATTENUATION

OSEM NAC TOF 600 ps NAC TOF NAC 50 ps

~ 2




