Models of cell membrane domains for surface interactions structural investigation

Valeria Rondelli

Dept. of Medical Biotechnology and Translational Medicine

Università degli Studi di Milano

CELL MEMBRANE INTERACTION WITH APPROACHING BODIES

Biology question is far...

what can we face?

→ simplified systems

keeping the main 'bio'-features

Challenging aspects

-> The model

-> The possibility to investigate it (the technique)

THE SYSTEM

Phospholipid membranes

Cell membrane

Structure

Dynamics

Activity

COMPLEMENTARY TECHNIQUES FOR MEMBRANE STRUCTURAL INVESTIGATION

SANS/SAXS from monolamellar vesicles

Membrane form factor Aggregate shape Structuring in solution

N/XD from membrane stacks

Membrane thickness/thicknesses (lateral domains)

N/XR from single supported membranes

Membrane transverse structure

DIFFERENT METHODS FOR MEMBRANE DEPOSITION Vesicle Fusion

Fusion on solid supports

Liposomes Preparation

Multicomponent vesicle fusion

Langmuir Blodgett – Langmuir Schaefer technique

HOMOGENEOUS DEPOSITION (5 nm thick) OVER LARGE AREAS (5x8 cm²)
OF MONOLAYERS CONTROLLED IN NUMBER AND COMPOSITION

SPECULAR REFLECTION FROM FLAT INTERFACES

Specular reflection

The intensity of the reflected radiation depends on n_o and n_1

$$N_b = \frac{\sum_i n_i b_i}{V}$$

Scattering Length Density (SLD)

SPECULAR REFLECTION FROM MULTILAYERS

More than 1 interface:

Newton, 1675

NOMETRA

Interference depends on thickness d as well as on the refractive indexes N_{bi}

REFLECTOMETRY ON LIPID MEMBRANES

p (10° A-2)

Information about the transverse structure of the sample, layer by layer:

thickness, composition, compactness, roughness

WHY DIFFERENT RADIATIONS?

X-ray

Good contrast for SUGARS (high electron density)

Neutron

Hydrogen coherent scattering length: -3.74×10^{-5} Å Deuterium coherent scattering length: $+6.67 \times 10^{-5}$ Å

Playing with selective deuteration **protiated molecules can be** evidenced in the deuterated phospholipid matrix

Membrane components distribution

External interacting molecules distribution

H. Wacklin, ESS

MEMBRANE MODELS

phospholipids

transmembrane protein (K+ channel)

raft models

WE CAN MODEL INTERACTIONS AT MEMBRANE SURFACE

EXTRACELLULAR VESICLES

GAPS

- ✓ Nanoscale spatio-temporal details on how different EVs interact with target cells
- ✓ Factors influencing the biogenesis and release of the molecular cargo

KEY CONCEPTS

- → Uptake dynamics and mechanisms are tightly related to the potency and function of EVs
- →Evs play a key-role in diseases spreading
 - Understanding the molecular basis of diseases
 (eg. cancer, neuro-degenerative)
 - → devise of EVs-based therapies

OUR STRATEGY

sEVs

Standardized protocols and Good Manufacturing Practice conditions to derive **highly stable vesicles** of **defined size and reproducible molecular profiles** from Umbilical Cord multipotent Mesenchymal Stem (Stromal) Cells (MSCs)

1. Isolation

and

Characterization

of sEVs

- ✓ Nanoparticle Tracking Analysis
- √ Light Scattering
- ✓ Surface marker analysis
- ✓ Cryo-Electron Microscopy
- ✓ Small Angle X-Ray Scattering
- ✓ Small Angle Neutron Scattering
- ✓ Atomic Force Microscopy
- ✓ Neutron Reflectometry
- 2. Investigation of sEVs uptake mechanisms
 - ✓ Atomic Force Microscopy
 - ✓ Small Angle Neutron Scattering
 - ✓ Neutron Reflectometry

SEVS CHARACTERIZATION

Surface marker analysis

ray or utron beam sample in solution detector scattering curve

SAXS SANS DLS NTA Cryo-EM AFM

3-layered membrane model, accounting for the proteomic component extending in the extravesicular solution.

Castorph et al. Biophysical Journal (2010)
(Synaptic vesicles)

NEUTRON REFLECTOMETRY ON SEVS-DERIVED SUPPORTED BILAYERS

single bilayer containing molecules other than lipids, as large proteins

SLD 2 ± 0.2 x10⁻⁶ Å⁻²

 $R \approx \left(\frac{16\pi^2}{q^4} N_b^2\right) e^{-q_z^2 \sigma^2}$

lipid: protein 22: 78

(by volume)

SEVS UPTAKE MECHANISMS

Wiklander et al., Science Trans. Medicine (2019)

Cargo release may be favoured or prevented

PREFERENTIAL SITE OF INTERACTION

DOPC:SM:Chol 2:1:0.15 mol

AFM@ ELETTRA, Trieste

Fabio Perissinotto Pietro Parisse Loredana Casalis

Supported membranes by vesicle fusion

Lipid phase separation

PHASE BORDERS ARE DOCKING SITES

SLB 5 minutes after addition of sEVs

PATCHES EXPANSION FAVOURED IN L_d PHASE

STRUCTURAL DETAILS OF MIXING: NEUTRONS

<u>Reflectometry</u>

Small Angle Scattering

$$R \approx \left(\frac{16\pi^2}{q^4} N_b^2\right) e^{-q_z^2 \sigma^2}$$

$$I(q) \div c M P(q) S(q) (\Delta \rho)^2$$

Selective deuteration → H-bringing molecules can be evidenced in a deuterated phospholipid matrix

External molecules interaction and distribution within membrane leaflets

NEUTRON REFLECTOMETRY

	AFM ΔZ (nm)	NR h (nm)
PC	5.1 ± 0.6	4.2 ± 0.3
PC+EVs	6 ± 2	5.4 ± 0.3
EVs	9 ± 3	6.9 ± 0.3

mixed system

characterization

0.5nm water

- 20% volume penetration
- > Change in contrast spans whole membrane thickness
- Asymmetric

SANS

sEVs: dDMPC Vs

1: 15000

1:3000 1:2700

$$P(q) = \frac{\text{scale}}{V}F^2(q) + \text{background}$$

$$F(q) = rac{3}{V_s}igg[V_c(
ho_c-
ho_s)rac{\sin(qr_c)-qr_c\cos(qr_c)}{(qr_c)^3} + V_s(
ho_s-
ho_{
m solv})rac{\sin(qr_s)-qr_s\cos(qr_s)}{(qr_s)^3}igg]$$

(Guinier, 1955)

- Change in contrast spans whole membrane thickness
- Asymmetric

- Separate processes can be distinguished
- √ I_o borders granularity increases after fusion
- ✓ Patches expansion is favoured in I_d phase
- ✓ Final membrane is asymmetric

F. Perissinotto & V. Rondelli et al., Nanoscale (2021)

The uptake process departs from the espected 'simple' fusion

We can identify specific vesicle-cell uptake routes

...eventually tunable for therapeutic needs

Conclusion

Complex systems can be built up and characterized

X-ray and neutron small angle scattering and reflectometry are essential complementary techniques for cross-structural investigations down to the nanoscale of self assembled systems and of thick interfaces

Possibility to work in physiological conditions

Possibility for in-situ interaction studies

Perspectives in biology (and not only....) are numerous

Acknowledgements

P. Brocca

S. Abdalla

M. Grava

Università di Milano

M. Gimona

E. Rohde

M. Mayr

K. Pachler

Scitrec Lab PMU, Salzburg

L. Casalis

B. Senigagliesi

ELETTRA, Trieste

P. Parisse

ELETTRA, Trieste CNR, Trieste

H. Amenitsch B. Sartori

TU, Graz

L. Bottyan

D. Merkel

S. Sajti

L. Almasy

BNC, Budapest

F. Perissinotto

ELETTRA, Trieste Institut Pasteur, Lille

