# Theoretical Spectroscopy of Graphene Nanoribbons

### Alice Ruini

DIPARTIMENTO DI SCIENZE FISICHE, INFORMATICHE E MATEMATICHE, UNIVERSITA' DI MODENA E REGGIO EMILIA, ITALY



CNR-NANO ISTITUTO NANOSCIENZE, CENTRO S3
MODENA, ITALY



# Graphene



special properties of <u>extended</u> graphene



and ...gap opening through graphene nanostructuring



# Edges



# **Graphene nanoribbons**

- Fundamental properties
  - 1D confinement effects







- Simulation of electronic, optical, vibrational spectroscopies -> REAL LIFE!
  - Substrate effects
  - Edge-shape effects
  - Impact of functionalization groups (and position)
  - Structural distortions



- Finite-size effects



- Designing new structures, e.g.:
  - Width modulation
  - Edge functionalization
  - π-π aggregation







#### Methods

#### **Density Functional Theory** (DFT) for ground state properties

- Structural properties (for 100-1000 atoms, errors of a few % on lattice parameters)
  - ✓ Surfaces & interfaces: adsorption energies delicate parameter, depends on the description of van der Waals forces
  - ✓ Molecules/polymers: they might need more advanced xc functionals to be well reproduced, see e.g. torsion angles ...
- <u>Vibrational properties</u> (within 10-50 cm<sup>-1</sup>)
  - ✓ Phonon calculations based on Density Functional Perturbation Theory (DFPT)\*
  - ✓ Raman Intensities calculated according to Placzek approximation\*\*

# WARNING DFT fails:

- **Electronic properties**: strong underestimation of the band gap (> 30-50%)
- **Optical properties**: energies may be captured due to error cancellations; nature of optical excitation is however not correct (no bound states)

\*\*M.Lazzeri et al. PRI 90 036401 (2003) P. Giannozzi et al., JPCM (2009); JPCM (2017)

<sup>\*</sup>S.Baroni Rev.Mod.Phys 73 515-562 (2001)

### Methods

⇒ Many-Body Perturbation Theory (MBPT) for excited-state properties



Quasiparticle corrections within **GW** approximation\*



#### SIMULATED SPECTROSCOPIES:

STS, PES, IPES, ARPES,



\* Hedin (1965); Hybertsen & Louie, PRB (1986)

#### Methods

#### ⇒ Many-Body Perturbation Theory (MBPT) for excited-state properties

• Optical properties within Bethe-Salpeter equation

$$[(E_{ck}-E_{vk})\delta_{cc'}\delta_{vv'}\delta_{kk'}+K_{cvk,c'v'k'}]\Psi_{c'v'k'}^{(n)}=\Omega_n\Psi_{cvk}^{(n)} \qquad \text{Bethe-Salpeter equation}$$
 
$$\phi^{(n)}(\mathbf{r}_e,\mathbf{r}_h)=\sum_{cvk}\Psi_{cvk}^{(n)}[\psi_{vk}(\mathbf{r}_h)]^*\psi_{ck}(\mathbf{r}_e)$$
 
$$\Omega_n\neq E_{ck}-E_{vk} \qquad \text{Mixing of single particle transitions}$$



#### SIMULATED SPECTROSCOPIES:

OPTICAL ABSORPTION, RESONANT RAMAN, REFLECTANCE DIFFERENCE SPECTROSCOPY,

..



# **Graphene nanoribbons**

#### Fundamental properties









#### • Simulation of electronic, optical, vibrational spectroscopies -> REAL LIFE!

- Substrate effects
- Edge-shape effects



- Structural distortions



- Finite-size effects



#### Designing new structures, e.g.:

- Width modulation
- Edge functionalization
- π-π aggregation







## Addressing optical excitations in low-D

#### **Ideal low-D systems**



 $E_B \rightarrow \infty$  for ideal **1D** Suppression vHs

#### What about quasi-1D real systems?

→ Which nature of optical excitations? Single-particle picture or excitons?





- $\rightarrow$  Magnitude of e-h interaction (E<sub>B</sub>)?
- → Which kind of exciton?





# Many-body effects in GNRs



#### Without e-h (GW-RPA):

•E<sup>-1/2</sup> singular behaviour in single-particle spectra



#### With e-h (BSE):

•Individual excitonic peaks below the continuum onset

α

Suppression of 1D van-Hove singularities





# Confinement Effects in other 1D sysyems



## **Optical Excitations**





Strong excitonic effects

• Wannier-like bound excitons

$$a_0 \sim 1 \text{ nm}$$

• Family dependence for E<sub>B</sub> → Tunability

N=3p+1: doublet of optically active excitations + dark state



N=8

N=9

N = 10

bind

Photon energy (eV)



# atomically precise ribbons were then produced!



# GNRs: Bottom-up Production Techniques

#### Controlled Synthesis of GNRs: nm-wide structures, edge control



X. Yang et al., JACS **130**, 4216 (2008)



J. Cai et al., Nature 466, 470 (2010)



Nature **458**, 872 (2009); Nature **458**, 877 (2009); Elias et al., Nano Lett. (2009).



Wang & Dai Nature Chem. 2, 661 (2010)

# Not only atomically precise GNRs (2010)... but also optical measurements became available (2014)!



J. Cai *et al.,* Nature **466**, 470 (2010)



#### **Reflectance Difference Spectroscopy:**

Measuring optical in-plane anisotropy during GNR growth



R. Denk et al., Nature Comm. 5, 4253 (2014)

# **Graphene nanoribbons**

#### Fundamental properties

- 1D confinement effects







#### Simulation of electronic, optical, vibrational spectroscopies → REAL LIFE!

- Substrate effects
- Edge-shape effects



- Impact of functionalization groups and position
- Structural distortions



- Finite-size effects



#### Designing new structures, e.g. :

- Width modulation
- Edge functionalization
- π-π aggregation







# **Optical properties**

#### **Precursors deposited on Au(788)**





#### **Reflectance Difference Spectroscopy**

$$\frac{\Delta r}{r} = 2\frac{r_x - r_y}{r_x + r_y} = 2\frac{r_{[1\bar{1}0]} - r_{[001]}}{r_{[1\bar{1}0]} + r_{[001]}}$$





# Optical properties of GNRs: Exp vs. Theo

#### **RDS** experiment



#### **Theory**



- Optical properties dominated by excitons
- Very good agreement theo↔exp ⇒ negligible substrate effects
- Large absorbance

# **Graphene nanoribbons**

- Fundamental properties
  - 1D confinement effects







• Simulation of electronic, optical, vibrational spectroscopies -> REAL LIFE!

- Substrate effects
- Edge-shape effects



- Structural distortions



- Finite-size effects



- Designing new structures, e.g. :
  - Width modulation
  - Edge functionalization
  - π-π aggregation







# Which interpretation?

|     | s.         |
|-----|------------|
| GW  | Exp. (STS) |
|     |            |
| 3.7 | (2.3)      |
| 5.3 | 3.7        |
|     | Exp. (RDS) |
|     |            |
|     | 2.1/2.3    |
|     | 3.0        |
| _   | 3.7        |





STS GNR@Au(111)  $E_{gap} = 2.3 \pm 0.1 \text{ eV}$ 

#### **GAS-PHASE 7-AGNR**



large quasi-particle corrections to the energy gap  $E_{LDA}$  = 1.6 eV  $\rightarrow$   $E_{GW}$  = 3.7 eV

- confinement increases e-e interaction
- weak screening

#### 7-AGNR WITH AU SUBSTRATE



A-GNR bands at Au(111) (red) very similar to gas phase (black)

- minimal hybridization effects
- substrate effects mostly due to surface polarizability → Image Charge Model!

J. Neaton et al., PRL 97, 216405 (2006)



L estimated from exciton wavefunction (BSE )

& tical saturation

optical saturation length (excitons in finite ribbons)

#### Image charge model

- takes into account the polarization induced by the charged excitation of the system
- for <u>finite systems</u>, the charge distribution of the frontier orbitals (HOMO or LUMO) is described in terms of localized charges
- for <u>extended systems</u>, we need to define an effective (screening) length L of the excitation charge distribution

L~30-60 Å



# Effect of the metallic substrate

→ The gap is reduced as an effect of the *substrate*polarization [See Neaton et al, PRL 97, 216405 (2006) - Fig. below]



Quasiparticle corrections

+ Image Charge model



# **Electronic and optical properties**



| Table 1   Electronic and optical properties of 7-AGNRs and PA oligomers. |     |                                 |                     |            |
|--------------------------------------------------------------------------|-----|---------------------------------|---------------------|------------|
|                                                                          | GW  | IC corr.                        | <b>GW</b> +IC corr. | Exp. (STS) |
| Transport band gap (eV)                                                  |     |                                 |                     |            |
| 7-AGNR                                                                   | 3.7 | 1.0-1.4                         | 2.3-2.7             | 2.3        |
| PA oligomer                                                              | 5.3 | 1.0-1.4                         | 3.9-4.3             | 3.7        |
|                                                                          |     | E <sub>b</sub> <sup>11/22</sup> | <b>GW</b> + BSE     | Exp. (RDS) |
| Optical band gap (eV)                                                    |     |                                 |                     |            |
| 7-AGNR                                                                   |     | 1.8/1.4                         | 1.9/2.3             | 2.1/2.3    |
| PA oligomer                                                              |     | 2.3/2.1                         | 3.0/3.2             | 3.0        |

# **Graphene nanoribbons**

- Fundamental properties
  - 1D confinement effects







• Simulation of electronic, optical, vibrational spectroscopies -> REAL LIFE!

- Substrate effects
- Edge-shape effects



- Impact of functionalization groups and position
- Structural distortions



- Finite-size effects





- Width modulation
- Edge functionalization
- π-π aggregation







# Several possible edge shapes beyond straight-edge aGNRs and zGNRs!



# Chevron-like armchair GNRs



- Still strong 1D fingerprints?
- Different spectroscopies in comparison

# Theo vs. Exp for Chevron oligomers and GNRs



## Rationale from MBPT for chevron oligomers and GNRs



# **Graphene nanoribbons**

- Fundamental properties
  - 1D confinement effects







• Simulation of electronic, optical, vibrational spectroscopies -> REAL LIFE!

Non-planar

- Substrate effects
- Edge-shape effects
- Impact of functionalization groups and position
- Structural distortions



- Finite-size effects



- Designing new structures, e.g. :
  - Width modulation
  - Edge functionalization
  - π-π aggregation







# Several possible edge shapes beyond straight-edge aGNRs and zGNRs!



# **Cove-shaped GNRs**





# Electronic and optical properties of cove-shaped GNRs





- The overall spectral feaures agree, two separate optical transitions for CGNR-II
- This behavior can be traced back to occurring band inversion
- Theoretical peaks are slightly red-shifted

# Vobrational signatures for cove-shaped GNRs



- The two structures can be fingerprinted through the TRIO mode
- The overall good agreement theo-exp supports the successful synthesis and the structural variation

# **C-H** wagging signatures in IR spectrum of nanographene

#### **C-H Wagging**











860-910 cm<sup>-1</sup>

800-860 cm<sup>-1</sup>

750-800 cm<sup>-1</sup>

**QUATRO** 730-770 cm<sup>-1</sup>

#### In the CNR case:





Centrone et al., Carbon 43, 1593 (2005)

# Vibrational IR signatures for cove-shaped GNRs









The peak at 863 cm<sup>-1</sup> is connected to the wagging of C-H in SOLO position

The peak at 769 cm<sup>-1</sup> is connected to the wagging of C-H in TRIO position

# Raman fingerprints for GNRs

#### Theory



Gillen et al, PRB 80, 155814 (2009); PRB 81, 205426 (2010)

#### A-GNRs @ Au(111)



J. Cai et al., Nature (2010)

#### CNRs in solution



Narita et al. Nat. Chem. (2014)

- Very good agreement for AGNRs @ Au
- Puzzling results for cove-shaped GNRs in solutions, such as:
  - BLM peak is not where expected
  - Unusual peak broadening

# Raman fingerprints for cove-shaped GNRs



C<sub>4</sub>H<sub>o</sub>

Frequency (cm<sup>-1</sup>)

- Effective width should be considered for cove-shaped GNRs
- Coupling with alkyl side chains might further influence the BLM peak, which is red-shifted and broader

# **Graphene nanoribbons (from 2007)**

- Fundamental properties
  - 1D confinement effects
- •D. Prezzi,et al, "Optical properties of one-dimensional graphene polymers: the case of polyphenanthrene", *pssb* 244, 4124 (2007)
- D. Prezzi, et al , "Optical properties of graphene nanoribbons: The role of many-body effects", *PRB* 77, 041404(R) (2008)

#### • Simulation of electronic, optical, vibrational spectroscopies

- Substrate effects
- Edge-shape effects
- Impact of functionalization groups
- Structural distortions
- Finite-size effects

- •R. Denk,et al, "Exciton-dominated optical response of ultra-narrow graphene nanoribbons", *Nature Communications* 5, 4253 (2014)
  - •D. Rizzo,et al, "Multiwavelength Raman spectroscopy of ultranarrow nanoribbons made by solution-mediated bottom-up approach", *PRB* 100, 045406 (2019)
  - •R. Denk,,et al, "Probing optical excitations in chevron-like armchair graphene nanoribbons", *Nanoscale* 9, 18326-18333 (2017).
    •C. Cocchi,,et al, "Electronics and Optics of Graphene Nanoflakes: Edge
    - •C. Cocchi,,et al, "Electronics and Optics of Graphene Nanoflakes: Edge Functionalization and Structural Distortions", *JPCC* 116, 17328 (2012)
      - •I. A. Verzhbitskiy,et al, "Raman Fingerprints of Atomically Precise Graphene Nanoribbons", *Nano Letters* 16, 3442 (2016)
  - •C. Cocchi,et al, "Concavity Effects on the Optical Properties of Aromatic Hydrocarbons", JPCC 117,12909 (2013)
  - .B. Hu, et al, "Bandgap Engineering of Graphene Nanoribbons by Control over Structural Distortion", *J. Am. Chem. Soc.*140, 7803-7809 (2018)
  - •C. Cocchi, et al, "Optical Excitations and Field Enhancement in Short Graphene Nanoribbons", JPCL 3, 924 (2012).
  - •C. Cocchi,et al, "Anisotropy and Size Effects on the Optical Spectra of Polycyclic Aromatic Hydrocarbons", *Journal of Physical Chemistry A* 118, 6507 (2014)

#### Designing new structures, e.g. :

- Width modulation
- D. Prezzi, et al, "Quantum dot states and optical excitations of edge-modulated graphene nanoribbons", PRB 84, 041401(R) (2011)
   C. Cocchi, et al, "Optical Properties and Charge-Transfer Excitations in
- Edge functionalization

Edge-Functionalized All-Graphene Nanojunctions", *JPCL* 2, 1315 (2011) •C. Cocchi, et al, "Designing All-Graphene Nanojunctions by Covalent Functionalization", *JPCC* 115, 2969 (2011)

- π-π aggregation
- •M. De Corato, et al, "Optical Properties of Bilayer Graphene Nanoflakes", JPCC 118, 23219 (2014).

#### Conclusions

- Ab initio methods provide a powerful tool for:
  - → understanding/predicting fundamental physical properties
  - → "in-silico" materials design
- In the case of GNRs, simulation of spectroscopies allow:
- → Capturing several different **effects** for this very rich class of materials, such as quantum confinement, substrate, edge-shape, edge-functionalization, structural distortion,..., one can play with
- → Tunability means extraordinary versatility as next-generation semiconducting material for nano-electronics and -optoelectronics
- $\rightarrow$  Designing new, tunable graphene-nano-heterostructures through edge modulation, chemical functionalization and  $\pi$ -coupling
- Many open challenges ... in many different directions!!!

# Designing new lowD materials



# Special thanks to:

#### **THEO COWORKERS**



Deborah Prezzi



Andrea Ferretti



Daniele Varsano



Caterina Cocchi



Marzio De Corato



Marilia J. Caldas



**Sudong Wang** 



Stefano Corni



Elisa Molinari

#### MAIN EXP COLLAB.



Valentina De Renzi



Aki Narita



Cinzia Casiraghi

... and to all of you for your attention!