La radiografia muonica

dallo studio dei vulcani alle applicazioni in campo industriale ed archeologico

Giulio Saracino

Università di Napoli *Federico II e* Istituto Nazionale di Fisica Nucleare

107° CONGRESSO NAZIONALE della SOCIETÀ ITALIANA DI FISICA

Sezione 6: Fisica applicata, acceleratori e beni culturali

15 settembre 2021

Sommario

- I raggi cosmici e tipi di radiografia muonica
- Tecnologie utilizzate e ambiti di applicazione
- Esempi

l raggi cosmici

- 1912: Hess scoperta di una componente extraterrestre nella radioattività ambientale
- Radiazione cosmica primaria: protoni (90%, nucleo di elio (9%) altri nuclei)
- Interazioni con l'atmosfera Terrestre: sciami adronici -> produzione di altre particelle : π , K, -> μ , e, γ , ν , ...
- Decadimenti delle particelle instabili -> al livello del mare $\mu e \nu$ sono predominanti

Energia dei primari : può raggiungere i milioni di GeV

I muoni:

- Carica elettrica = $\pm 1 q_e$
- Massa = 105 MeV (~200 volte elettrone)
- Vita media = 2,2 μ s -> L ~ 15 km @E= 4 GeV
- <E> = 4 GeV

- Massa elevate + energia + vita media -> alta penetrabilità nella materia
- Carica elettrica -> facilmente rivelabili
- Disponibili h24 a costo zero
- Nessun problema di radioprotezione

Svantaggio: flusso costante e statistica limitata

Tipi di radiografia muonica

Fenomeno fisico: Perdita di energia, dipende da ρ

Metodo di misura: Assorbimento: flusso misurato a valle / flusso atteso

Un unico tracciatore a valle La differenza tra flusso atteso e flusso misurato dipende dalla "opacità media"cioè dalla densità media per lo spessore di roccia. Fenomeno fisico:

Scattering Coulombiano multiplo: dipende da ρ e da Z

Metodo di misura: angolo di scattering: Si misura la direzione di ingresso e di uscita del muone

Due tracciatori : uno in ingresso, l'altro in uscita

Tecnologie per il rivelamento dei muoni

Caratteristica rivelatore	Scattering	Assorbimento
Superficie singolo piano	$\gtrsim 1 \text{ m}^2 \text{ X 2}$	$\lesssim 1 \text{ m}^2$
Risoluzione spaziale	≲ 1mm	\gtrsim 1 mm
Volume da investigare	$\lesssim 100 \text{ m}^3$	>> 100 m ³
Oggetto da risolvere	\lesssim 10 cm	\gtrsim 1 m
3D	si	possibile
Tempi di acquisizione	\gtrsim 1 min	\gtrsim 1 day

Tecnologie per il rivelamento dei muoni

Scintillatori plastici (PMT o SiPM)

Riveltori a gas RPC, wire chamber, micromegas

> Emulsioni nucleari RICH in aria

Applicazioni

SCATTERING:

- Materiale radioattivo
 - Container: contrabbando e sorgenti orfane
 - Caratterizzazione di bidoni
 - Ispezione di cestelli di barre esaurite
 - Controllo di reattori nucleari
- Monitoraggio di altiforni (densità interna)
- Applicazioni industriali
 - Studio del cemento armato
- Applicazioni mediche (radiografia torace)

ASSORBIMENTO:

- Prospezioni geofisiche
 - Vulcani
 - Cavità-discontinuita (sicurezza e archeologia)
 - Miniere
 - Bradisismo subaqueo
- Monitoraggio di altiforni (densità interna e spessore residuo)
- Applicazioni industriali (tubature, dighe)
- Monitoraggio della stabilità degli edifici
- Monitoraggio ambientale
 - Spessore ghiacciai alpini
 - Dinamica della temperatura della stratosfera

G. Saracino La radiografia Muonica 107° Congresso Nazionale SIF

Spin-off

Company	Founded	Country	Main application	Tecnolgy
Decision Sciences	2001	USA	Cargo scanning, nuclear fuel cask monitoring	MS
Lingacom	2012	Israel	Cargo scanning, ground survey	MS,TR
CRM GeoTomography now Ideon Technologies Inc.	2013	Canada	Mining exploration -> oil and gas, infrastructure, national security	TR
Muon System	2015	Spain	Industrial application, cargo scanning	MS,TR
Lynkeos Technology	2016	UK	Nuclear safety and security	MS
Muon Solutions	2016	Finland	Mining exploration	TR

Studio dei vulcani:

- In Italia
 - Vesuvio
 - Stromboli
 - Etna
- Giappone
 - Satsuma-Iwojima
- Francia
 - La Soufrière, Guadalupa
 - Puy De Dome

M. D'Errico et al.: Radiografia Muonica applicata ai vulcani: Studio della parte sommitale del Vesuvio nell'esperimento MURAVES. Sezione 4 – Geofisica e fisica dell'ambiente

Alcuni esempi nel campo della fisica applicata

Studio delle piramidi

Alvares

Scan Pyramids

Le due grandi piramidi a confronto:

esternamente molto simili. Non altrettanto lo sono all'interno.

1969-70: Alvares

Installò un rivelatore nella stanza di Belzoni, alla base della piramide.

Progetto SCAN Pyramids

The scan pyramids big-void discover 2016 Piramide di Khufu (Cheope)

Tre differenti tecnologie utilizzate: emulsioni nucleari, scintillatori e rivelatori a gas

Volumi noti: B galleria grande A camera del re. C segnale del vuoto inaspettato

Nel 2017 rivelatori ad emulsioni nucleari, hanno confermato l'esistenza del vuoto, raffinando la precedente misura.

muoni

Studio di cavità nel sottosuolo

Neapolis Mt Echia: antica città di Parthenope VIII B.C.

Mt. Echia

Mt. Echia

Ricco di cavità

Il tunnel borbonico

Nel 1853 Ferdinando II di Borbone lo fa realizzare, per scopi militari.Diventa quindi rifugio antiaereo, deposito giudiziario etc. etc. Restaurato di recente (dal 2005) e inserito nel percorso archeologico sotterraneo.

Un gran numero di strutture sotterranee sono state scoperte.

L'esplorazione continua....

Credits: G. Minin Associazione Borbonica Sotterranea.

G. Saracino

La radiografia ividonica

107° Congresso Nazionale SIF

Il sito di osservazione

107° Congresso Nazionale SIF

Il rivelatore MU-RAY

Elettronica front end ASIC EASIROC (OMEGA) **FPGA** HV on board 32 Ch 2W consumo

PCB 32 SiPM termostatabili (FBK)

DAQ board FPGA + Raspberri-Pi Sino 32 schede 107° Congresso Nazionale SIF

La radiografia Muonica

Il test

"Trovare" una camera vuota posta sopra il rivelatore

Molte strutture nel cono di ispezione

Accettanza del rivelatore: cono di 63° semiapertura

La trasmissione relativa R

$$R(\alpha,\phi) = \frac{T^{mis}}{T^{att}} \qquad T(\alpha,\phi) = \frac{N^{detc.}}{N^{free\,sky}}$$

Trasmissione di muoni misurata divisa trasmissione attesa

Ξ

R = 1 in assenza di cavità

R > 1 in presenza di cavità

Segnale atteso per la sola camera di test

Confronto dati e risultati attesi

Confronto dati e risultati attesi

Due segnali non corrispondono a strutture note

Tre misure con due rivelatori differenti

Algoritmo di ricostruzione 3D

Algoritmo di ricostruzione 3D

Riportando I punti della cavità in superficie si è localizzata l'area in cui si poteva trovare un ingresso

Sopralluogo

individuata una botola con cantina sottostante ed un pozzo ostruito che potrebbe mettere in comunicazione la camera nascosta con la superficie

Cimmino, L., Baccani, G., Noli, P. *et al.* 3D Muography for the Search of Hidden Cavities. *Sci Rep* **9**, 2974 (2019). <u>https://doi.org/10.1038/s41598-019-39682-5</u>

Un rivelatore cilindrico per studio da pozzo

Design of a new cylindrical detector

- Scintillators are read by Silicon Photomultipliers
- Tiny spacers in the scintillator housing ensures good light transmission
- 1 m long semicilinder obtained by stacking 4 ABS racks
- Electronics housed internally and on the top of the cylinder
- Self-supporting structure inserted in a stainless steel cylindrical shell

- A arc-shaped scintillator
- B 1 m long plastic scintillator bar
- C magnification of the rectangular section of a bar
- D two printed rack elements in ABS for housing the scintillators before removing the dissolvable support material

La radiografia Muonica

Assembly of the detector

384 SiPm and readout channels)

- The cylinder is finally obtained by fixing the two semicylinders on a steel base which will then close it with the rest of the waterproof stainless steel shell
- Ethernet and power plugs are attached on the top cap

107° Congresso Nazionale SIF

θ

Expected results

- Algorithms have been developed and tested with synthetic data
- Several simulated measurement campaigns were carried out by changing the position and size of the cavity and positioning the detector.
- An estimate of the position of the cavity can be obtained with the triangulation technique using data acquired from different drilling operations or from the same well at different depths.

• 3.12° expected zenith anglular resolution

107° Congresso Nazionale SIF

Rivelatore cilindrico: Attualmente in presa dati a Mt Echia

Cimmino, L., Ambrosino, F., Anastasio, A. et al.

A new cylindrical borehole detector for radiographic imaging with muons.

Sci Rep 11, 17425 (2021).

https://doi.org/10.1038/s41598-021-96247-1

Applicazioni Industriali: studio altiforni

Dalla radiografia muonica per scattering a quella per assorbimento BLEMAB European project –Research Funds for Coal and Steel program (RFCS-2019)

Vedi presentazione Diletta Borselli: Il progetto europeo BLEMAB: La radiografia muonica come strumento di maging in ambito industriale.

MUSTEEL

Sezione 6

Altre applicazioni in Italia

Settore archeo-minerario: miniera del Temperino

G. Bacccani: Muon Radiography of Ancient Mines: The San Silvestro Archaeo-Mining Park (Campiglia Marittima, Tuscany)

Universe 2019, 5, 34; doi:10.3390/universe5010034

Altre applicazioni in Italia

Dighe

Altre applicazioni in Italia

Cupola del Brunelleschi

Studio dello stato di conservazione della struttura

Guardincerri E et al. 2019 Imaging the dome of Santa Maria del Fiore using cosmic rays. Phil. Trans. R. Soc. A 377: 20180136. http://dx.doi.org/10.1098/rsta.2018.0136

Studio dello stato di conservazione di argini fluviali

Bonechi L et al. 2019 Tests of a novel imaging algorithm to localize hidden objects or cavities with muon radiography. Phil. Trans. R. Soc. A 377: 20180063. http://dx.doi.org/10.1098/rsta.2018.0063

La radiografia Muonica

G. Saracino

Conclusioni

- Molte applicazioni possibili, alcune più promettenti di altre
- Molti gruppi attivi nel mondo
- Spin-off attivi in diversi settori
- Margini di sviluppo notevoli, soprattutto sugli algoritmi e l'ingegnerizzazione