Polarized emission from strongly magnetized sources

Roberto Taverna

Dipartimento di Fisica e Astronomia G. Galilei Università degli Studi di Padova Dipartimento di Matematica e Fisica Università degli Studi di Roma Tre

> 107° Congresso Nazionale – Società Italiana di Fisica 13 – 17 Settembre 2021

Introduction

Roberto Taverna

Researcher at Department of Astronomy and Astrophysics «G. Galilei» University of Padova

- In collaboration with Roberto Turolla (dfa-unipd, UCL-MSSL), Silvia Zane (UCL-MSSL), Valery Suleimanov (IAA-Tubingen), Alexander Potekhin (IOFFE-St. Petersburg)
- Email: <u>roberto.taverna@pd.infn.it</u> <u>roberto.taverna@unipd.it</u>

Overview

- Theoretical model to simulate spectral and polarization properties of magnetar X-ray emission
- Comparison with the simulated response of forthcoming, newgeneration X-ray polarimeters (*IXPE*, *eXTP*)
- Obtaining information on
 - the geometry and physics of the source
 - the physical state of the star surface
 - testing QED vacuum polarization

Neutron star zoo

- Neutron stars (NSs) are relics of massive stars $(M \approx 8 25 M_{\odot})$
 - masses $M_{\rm NS} \approx 1 2 M_{\odot}$
 - radii $R_{\rm NS} \approx 10 15 \, {\rm km}$
 - spin periods $P \approx 10^{-2} 10$ s
 - period derivatives $\dot{P} \approx 10^{-20} 10^{-9} \text{ s/s}$
 - strong magnetic fields

$$B_{\rm sd} \approx 3.2 \times 10^{19} \sqrt{P\dot{P}} \,\mathrm{G} \rightarrow B_{NS} \approx 10^{12} \,\mathrm{G}$$

Neutron star zoo

107° Congresso Nazionale della Società Italiana di Fisica

· Radio PSR: × RRATs • XDINSs

Magnetars

AXPs and SGRs

- Longer spin periods and larger spin-down rates $P \approx 2 - 12 \text{ s}$ $\dot{P} \approx 10^{-13} - 10^{-9} \text{ s/s}$ \Rightarrow $B_{sd} \approx 10^{14} - 10^{15} \text{ G}$ Magnetars!
- Radio-silent sources (mostly)
- X-ray luminosity usually exceeding the rotational energy losses

$$L_{\rm X} > \dot{E}_{\rm rot} = I\Omega\dot{\Omega}$$
 Anomalous!

AXPs and SGRs – Persistent emission

- Soft X-ray spectra (0.5 10 keV) well fitted by a thermal (BB) component ($T \approx$ 0.5 keV) and a power-law ($\Gamma \approx 2 - 4$)
- Purely thermal spectra (BB+BB) tipically for transient sources
- X-ray luminosity $L_{\rm X} \approx 10^{33} 10^{36}$ erg/s
- Additional PL component ($\Gamma \approx 1 2$) at higher energies ($\gtrsim 20 \text{ keV}$)

Tendulkar et al. (2015)

AXPs and SGRs – Bursting activity

- Short bursts
 - $-\Delta t \approx 0.01 1 \text{ s}$ - $L_{\rm X} \approx 10^{36} - 10^{42} \text{ erg/s}$
- Intermediate flares
 - $-\Delta t \approx 1 10 \text{ s}$ $-L_{\text{X}} \approx 10^{41} - 10^{43} \text{ erg/s}$
- Giant flares
 - $-\Delta t \approx 10^2 \text{ s}$
 - $-L_{\rm X} \approx 10^{44} 10^{47} \, {\rm erg/s}$

Twisted-magnetosphere model

• The internal magnetic field of the star develops a strong toroidal component

Twisted-magnetosphere model

- The internal magnetic field of the star develops a strong toroidal component
- Once the magnetic stress exceeds the mechanical yield of the crust the external field becomes «twisted»

Twisted-magnetosphere model

- The internal magnetic field of the star develops a strong toroidal component
- Once the magnetic stress exceeds the mechanical yield of the crust the external field becomes «twisted»

• Twist angle

$$\Delta \phi_{\rm N-S} = 2 \lim_{\theta \to 0} \int_{\theta}^{\pi/2} \frac{B_{\phi}}{\sin \theta B_{\theta}} d\theta$$

Magnetospheric currents

 Non-potential field ⇒ charged particles must flow along the closed field lines

$$n_e \propto \frac{B}{r\beta} \left(\frac{B_{\phi}}{B_{\theta}} \right)$$

Media INAF

• Thermal photons will resonantly scatter onto moving charged particles

Magnetar model achievements

- Resonant scattering onto magnetospheric particles generates powerlaw spectral tails in soft X-ray spectra
- Due to crustal deformations caused by the internal field e⁻e⁺ fireballs are injected in the magnetosphere (generating short burst and giant flare emission)

- Photons propagating in the strongly-magnetized vacuum around the star are linearly polarized in two normal modes:
 - O-mode (photon electric field oscillating in the *kB* plane)
 - X-mode (photon electric field oscillating ortogonally to both **k** and **B**)

 The polarization pattern of photons at the surface should be quite reduced due to the rapid variation of the magnetic field at the emission

- The polarization pattern of photons at the surface should be quite reduced due to the rapid variation of the magnetic field at the emission
 - Strong magnetic fields ($B \gtrsim B_q = 4.4 \times 10^{13}$ G) can polarize the virtual e^+e^- pairs in the vacuum around the star

rn of photons at the surface ed due to the rapid variation at the emission

$$(B \gtrsim B_q = 4.4 \times 10^{13} \text{ G})$$

If e^+e^- pairs in the vacuum

 This forces the photon electric field to adiabatically follow the magnetic field, maintaining their original polarization mode up to great distances from the star

• The limit within which polarization modes are preserved depends on the star magnetic field strength and on the photon energy

$$\frac{r_{\rm a}}{R_{\rm NS}} \simeq 4.8 \left(\frac{\hbar\omega}{1\,{\rm keV}}\right)^{1/5} \left(\frac{B_{\rm p}}{10^{11}\,{\rm G}}\right)^{2/5} \left(\frac{R_{\rm NS}}{10\,{\rm km}}\right)^{1/5}$$

• The observed polarization pattern faithfully traces that at the emission as long as $r_{\rm a}$ is sufficiently large

 If QED effects were not present the observed polarization would be extremely low

- Photon polarization state may change in the interactions with matter in strong magnetic fields
- X-mode opacities are normally much suppressed with respect to Omode ones

- Photon polarization state may change in the interactions with matter in strong magnetic fields
- X-mode opacities are normally much suppressed with respect to Omode ones
- RCS cross sections:

$$\sigma_{\rm O-O} = \frac{\pi^2 e^2}{2m_{\rm e}c} \delta(\omega - \omega_{\rm D}) \cos \vartheta = \frac{1}{3} \sigma_{\rm O-X}$$
$$\sigma_{\rm X-X} = \frac{3\pi^2 e^2}{2m_{\rm e}c} \delta(\omega - \omega_{\rm D}) = 3\sigma_{\rm X-O}$$

• 100%-polarized BB radiation at a constant temperature *T* over the star surface

- 100%-polarized BB radiation at a constant temperature *T* over the star surface
- Radiation reprocessed in a geometrically-thin optically-thick atmospheric layer (magnetized, pure-H, Suleimanov et al. 2009)

- 100%-polarized BB radiation at a constant temperature *T* over the star surface
- Radiation reprocessed in a geometrically-thin optically-thick atmospheric layer (magnetized, pure-H, Suleimanov et al. 2009)
- «Bare», solid surface made by a magnetic condensate formed for sufficiently high *B* and sufficiently low *T* (Potekhin et al. 2012)

 Monte Carlo FORTRAN code (Nobili, Turolla & Zane 2008; Taverna et al. 2014) to reproduce spectra and polarization properties of magnetar persistent radiation collected at infinty

 Monte Carlo FORTRAN code (Nobili, Turolla & Zane 2008; Taverna et al. 2014) to reproduce spectra and polarization properties of magnetar persistent radiation collected at infinty

 Monte Carlo FORTRAN code (Nobili, Turolla & Zane 2008; Taverna et al. 2014) to reproduce spectra and polarization properties of magnetar persistent radiation collected at infinty

> Photons collected at infinity, accounting for Stokes parameter rotation

- Monte Carlo FORTRAN code (Nobili, Turolla & Zane 2008; Taverna et al. 2014) to reproduce spectra and polarization properties of magnetar persistent radiation collected at infinty
- Specific IDL script to introduce the source geometry

X-ray polarimetry: missions

- *IXPE* (Imaging X-ray Polarimeter Explorer) NASA-SMEX program NASA-ASI collaboration Expected launch: December 2021
- *eXTP* (enhanced X-ray Timing Polarimetry) Chinese Academy of Science CAS-INAF Expected launch: 2027

X-ray polarimetry: Gas Pixel Detector

• Photoelectric polarimeters ensure enough sensitivity between 2-10 keV

X-ray polarimetry: Gas Pixel Detector

- Photoelectric polarimeters ensure enough sensitivity between 2-10 keV
- Photoelectric effect is sensitive to polarization

$$\frac{d\sigma_{Ph}}{d\Omega} = r_0^2 \alpha^4 Z^5 \left(\frac{m_e c^2}{\hbar\omega}\right)^{7/2} \frac{4\sqrt{2}\sin^2\theta\cos^2\varphi}{(1-\beta\cos\theta)^4}$$
Photoelectrons are most probably emitted in the direction of *E*

X-ray polarimetry: Gas Pixel Detector

- Photoelectric polarimeters ensure enough sensitivity between 2-10 keV
- Photoelectric effect is sensitive to polarization

Simulated measurements

- Archive of theoretical, phase-resolved models for:
 - different values of χ , ξ , $\Delta \phi_{\rm N-S}$, β
 - different emission models
 - QED-ON and QED-OFF

Simulated measurements

- Archive of theoretical, phase-resolved models for:
 - different values of χ , ξ , $\Delta \phi_{\rm N-S}$, β
 - different emission models
 - QED-ON and QED-OFF
- Spectro-polarimetry simulation measurement for one specific (blind) set of input parameters (source 1RXS J170849.0-400910, $t_{exp} = 1$ Ms)

Simulated measurements

- Archive of theoretical, phase-resolved models for:
 - different values of χ , ξ , $\Delta \phi_{\rm N-S}$, β
 - different emission models
 - QED-ON and QED-OFF
- Spectro-polarimetry simulation measurement for one specific (blind) set of input parameters (source 1RXS J170849.0-400910, $t_{exp} = 1$ Ms)
- Fit of the mock-data with the whole archive

Timing analysis

• Data analysis through the python tool HENDRICS (Bachetti, 2018)

Timing analysis

- Data analysis through the python tool HENDRICS (Bachetti, 2018)
- Z^2 -search of the period and period derivative of the source

	<i>P</i> (s)	₽̈́ (s/s)
mock data	11.010	2.1×10^{-11}
Dib & Kaspi (2014)	11.005	2.0×10^{-11}

Timing analysis

- Data analysis through the python tool HENDRICS (Bachetti, 2018)
- Z^2 -search of the period and period derivative of the source
- Data have been binned into 9 phase bins

• Phase-dependent fit of the mock data energy integrated between 2 - 8 keV

• Phase-dependent fit of the mock data energy integrated between 2 - 8 keV

BB QED-O	N (2-8 keV)	BB QED-OFF (2-8 keV)	free QEI	D-ON (2-8)	free QED-OFF (2-8)
chi xi Dphi beta log(N)	$\begin{array}{r} 82.68 \pm 0.71 \\ 55.60 \pm 0.41 \\ 0.442 \pm 0.011 \\ 0.238 \pm 0.012 \\ 1.560 \pm 0.003 \end{array}$	86.45 ± 0.54 39.40 ± 0.41 0.310 ± 0.000 0.573 ± 0.009 1.497 ± 0.001	chi xi Dphi beta log(N)	61.70 ± 0.66 58.59 ± 0.09 0.574 ± 0.010 0.690 ± 0.010 1.379 ± 0.001	92.49 \pm 0.34 38.25 \pm 0.29 0.310 \pm 0.000 0.690 \pm 0.000 1.397 \pm 0.001
chisq	2.619	449.502	chisq	381.403	634.216
***			***		
atmo QED	-ON (2-8 keV)	atmo QED-OFF (2-8 keV)	fix QED	-ON (2-8)	fix QED-OFF (2-8)
chi	86.75 ± 0.41	90.90 ± 0.20	chi	81.19 ± 0.59	117.17 ± 1.84
xi	48.32 ± 0.27	42.55 ± 0.25	×i	44.60 ± 0.32	9.39 ± 0.43
Dphi	0.310 ± 0.000	0.513 ± 0.005	Dphi	0.310 ± 0.000	0 1.390 ± 0.000
beta	0.685 ± 0.035	0.690 ± 0.000	beta	0.685 ± 0.011	l 0.301 ± 0.009
log(N)	1.227 ± 0.000	1.214 ± 0.001	log(N)	1.372 ± 0.001	1.264 ± 0.006
chisq	32.909	491.034	chisq	390.859	357.375

• Phase-dependent fit of the mock data energy integrated between 2 - 8 keV

BB QED-0	DN (2-8 keV)	BB QED-OFF (2-8 keV)	free QE	D-ON (2-8)	free QED-OFF (2-8)
chi xi Dphi beta log(N)	$\begin{array}{r} 82.68 \pm 0.71 \\ 55.60 \pm 0.41 \\ 0.442 \pm 0.011 \\ 0.238 \pm 0.012 \\ 1.560 \pm 0.003 \end{array}$	86.45 ± 0.54 39.40 ± 0.41 0.310 ± 0.000 0.573 ± 0.009 1.497 ± 0.001	chi xi Dphi beta log(N)	61.70 ± 0.66 58.59 ± 0.09 0.574 ± 0.010 0.690 ± 0.010 1.379 ± 0.001	$\begin{array}{r} 92.49 \pm 0.34 \\ 38.25 \pm 0.29 \\ 0.310 \pm 0.000 \\ 0.690 \pm 0.000 \\ 1.397 \pm 0.001 \end{array}$
chisq	2.619	449.502	chisq	381.403	634.216
***			***		
atmo QE[D-ON (2-8 keV)	atmo QED-OFF (2-8 keV)	fix QED	-ON (2-8)	fix QED-OFF (2-8)
chi	86.75 ± 0.41	90.90 ± 0.20	chi	81.19 ± 0.59	117.17 ± 1.84
xi	48.32 ± 0.27	42.55 ± 0.25	×i	44.60 ± 0.32	9.39 ± 0.43
Dphi	0.310 ± 0.000	0.513 ± 0.005	Dphi	0.310 ± 0.000	1.390 ± 0.000
beta	0.685 ± 0.035	0.690 ± 0.000	beta	0.685 ± 0.011	0.301 ± 0.009
log(N)	1.227 ± 0.000	1.214 ± 0.001	log(N)	1.372 ± 0.001	1.264 ± 0.006
chisq	32.909	491.034	chisq	390.859	357.375

- Phase-dependent fit of the mock data energy integrated between 2-8 keV
- Spectral analysis through the Heasoft tool XSPEC (Arnoud, 1996)

107° Congresso Nazionale della Società Italiana di Fisica

- Phase-dependent fit of the mock data energy integrated between 2 8 keV
- Spectral analysis through the Heasoft tool XSPEC (Arnoud, 1996)

BB QED-ON (2-8 keV)	BB QED-OFF (2-8 keV)	free QED-ON (2-8)	free QED-OFF (2-8)
chi 93.14 (-1.07,+1.08) xi 36.50 (-2.06,+2.88) Dphi 0.363 (-0.020,+0.019) beta 0.409 (-0.006,+0.006) nH(e22) 1.250 (-0.023,+0.024)	89.91 (-0.13,+0.15) 48.40 (-0.95,+0.60) 0.408 (-0.003,+0.003) 0.362 (-0.003,+0.002) 1.330 (-0.013,+0.020)	chi 122.16 (-0.39,+0.55) xi 56.32 (-0.70,+0.43) Dphi 0.422 (-0.004,+0.003) beta 0.340 (-0.003,+0.002) nH(e22) 1.296 (-0.015,+0.013)	75.01 (-0.06,+0.11) 58.41 (-0.29,+0.23) 0.464 (-0.002,+0.002) 0.438 (-0.002,+0.001) 1.025 (-0.015,+0.013)
chisq 1.011	1.160	chisq 1.702	1.798
***		***	
atmo QED-ON (2-8 keV)	atmo QED-OFF (2-8 keV)	fix QED-ON (2-8)	fix QED-OFF (2-8)
chi 14.97 (-0.08,+0.06) xi 0.10 (-0.10,+0.01) Dphi 0.300 (-0.300,+0.000) beta 0.218 (-0.004,+0.005) nH(e22) 5e-18 (-0.000,+0.822)	39.31 (-0.44,+0.46) 50.07 (-0.11,+0.11) 0.300 (-0.300,+0.000) 0.200 (-0.200,+0.000) 5e-17 (-0.000,+0.822)	chi 104.95 (-1.11,+0.10) xi 76.41 (-0.08,+0.08) Dphi 0.829 (-0.015,+0.006) beta 0.203 (-0.002,+0.002) nH(e22) 0.822 (-0.014,+0.015)	78.44 (-0.93,+0.54) 53.73 (-1.01,+0.36) 0.500 (-0.001,+0.001) 0.354 (-0.001,+0.001) 1.326 (-0.017,+0.013)
chisq 5.112	5.912	chisq 1.488	1.875

• Phase-dependent fit of the mock data energy integrated between 2 - 8 keV

Phase dependent analysis (2-8 keV)

Spectral analysis

	Fit param	1- σ error		Fit param	1- σ error
χ	82.68°	0.71°	χ	93.14°	1.08°
ξ	55.60°	0.41°	ξ	36.50°	2.47°
$\Delta \phi$	0.442 rad	0.011 rad	$\Delta \phi$	0.363 rad	0.020 rad
β	0.238	0.012	β	0.409	0.006
$\chi^2_{\rm red}$	2.619		$\chi^2_{\rm red}$	1.011	

Phase dependent analysis (2-8 keV)

Spectral analysis

Taverna et al. (2014)

Phase dependent analysis (2-8 keV)

Spectral analysis

Phase dependent analysis (2-8 keV)

Spectral analysis

• Original mock data input parameters:

emission model:
$$\rightarrow 100\%$$
 polarized BB
 $\chi = 85^{\circ} - \xi = 55^{\circ} - \Delta \phi_{N-S} = 0.35$ rad $-\beta = 0.39$

Conclusions

- Both phase-dependent and spectral analyses are necessary to completely determine the viewing geometry and the magnetospheric configuration
- Phase-dependent analysis will allow to test observationally QED vacuum polarization effects (to which spectral fits seem to be quite unsensitive)
- X-ray polarimetry is crucial to determine the surface emission models, removing spectral degeneracies