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Timing measurements in future experiments

Future colliders will be characterised by environments with high collision density |G-
——— difficulties in reconstruction and particle identification due to

— Near future example: High Luminosity LHC starting in 2026

At High Luminosity LHC, experiments need to maintain their performances in a new harsh environment

—— additional timing information to improve pile up rejection and particle identification
——— creation of timing layers in High-Lumi LHC experiments with 5, ~ few tenths ps
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Timing resolution

The design of the perfect silicon detectors depends on timing resolution
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Timing detectors

Several families of silicon detectors for picosecond timing have been designed so far
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Ultra-Fast Silicon Detectors

Ultra-Fast Silicon Detectors (UFSDs) project: production of innovative silicon sensors based on the
(LGAD) technology and optimised for

LGADs oy

o Additional highly-doped thin implant near the p-n junction T =

— gain layer BEE

e High local electric field allowing =" N

o to maximise signal/noise ratio et [ e
Efield Traditional Silicon Diode Efield | ow Gain Avalanche Diode

UFSD design for CMS Endcap Timing Layer:

e | arge multi-pads arrays Already produced
—— Segmentation through gain termination structures
—>

o

® Timing resolution

— Fast and large signals 16x16 array
e Fluences range up to (2.5e15 n,,/cm* with 50% safety factor)
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UFSD timing resolution

How to obtain a timing resolution o, ~ 30 ps with UFSDs?
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How can we do better?

Comparison WF2 Simulation - Data
Band bars show variation with temperature (T = -20C - 20C), and gain (G = 20 -30)

iZﬁ ® FBK - PIN (NA62) In UFSDs, time resolution decreases for thinner sensors
e ® FBK - UFSD
2 160 ® HPK - UFSD .
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Landau term vs sensor active thickness
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Sensors with 25 and 35 pm active thickness have been : 2
manufactured within the FBK production ¥
— 15-20 ps resolution looks achievable with thinner sensors st

00 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Sensor active thickness [um]

Marta Tornago Silicon Detectors for timing measurements 17th September 2021



1009% fill factor LGADs

In the current UFSD design, isolation structures between

gam layer JTE J TE gain layer

no-gain area ~70 pm

> ptt

Resistive AC-Coupled Silicon Detectors (RSD)

DC contact coupling
AC pad #1 AC pad #2  AC pad #3 (:}Ude

o C + o
resistive n* P -gain

l Introduction of AC coupling
and In

- Q I pAC-coupling silicon detectors
: Yy '== T sheet :
| = . | 1csnstwncc|
%/ :

thanks to charge sharing

readout pads represent a no-gain area for signal collection

Trench Isolated (Tl) LGADs

Gain termination implants replaced with a

a) STANDARD Virtual GR P- Stop JTE Metal pads

SEGMENTATION (3-5 um) (3-5) pm / (3-5) pm /

no-gain region
p-

b) TRENCH-ISOLATED
Trench (~ 1 pm)

no-gain

__ region
Pixel 1 p- e Pixel 2

p** substrate
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Monolithic sensors

Monolithic sensors combine the sensing layer and fonenc
Its readout circuitry in a single integrated circuit

e Excellent

e | ow material budget

New field, multiple possible approaches based on two technologies:

e CMOS Monolithic Active Pixel Sensors (MAPS)
— ALICE 3 TOF detector
e High Voltage CMOS (HV-CMQS)
— CACTUS with Depleted MAPS
e Fully Depleted MAPS
—— ARCADIA
¢ Monolithic CMOS sensors with small collection diodes
— ATTRACT project FASTPIX
® Monolithic SPAD arrays

|
|
h\
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e SiGe BICMOS
—— ERC project MONOLITH
—— SNSF project FASER
— ATTRACT project MonPicoAD
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CMOS MAPS In the ALICE experiment

ALICE experiments is using CMOS MAPS for the upgrade of the Inner Tracker System (ITS)
—> sensors

Evolution of TowerJazz 180 nm CMOS Imaging Process:

o 25-um thick epitaxial layer with high resistivity on p-type substrate

e Small n-well collection electrode in the center of the sensing volume —»
e Deep p-well provides of full CMQOS circuitry

UPGRADE

NWELL NMOS PMOS

DIODE TRANSISTOR /. TRANSISTOR Timing application in future Time-0f-Flight barrel detector of
= e ALICE3 experiment:

eGoal: TOF timing resolution of
. MAPS: up to 21 X 21 cm?
e Sensors thinned to
—— large area curved sensors
—— unprecedented low material budget: 0.5 % X,, per layer

10

Marta Tornago Silicon Detectors for timing measurements 17th September 2021



The CMOS family for fast timing

Goal: achieve fast collection time using fully depleted CMOS and high uniform electric fields
—— junction modified to reproduce the field of a parallel plate capacitor

FASTPIX CACTUS
CMOS ACtive Timing p Sensors

e Based on

e Highly resistive p-type 25 uym-thick epitaxial layer e Based on

® ®

. with e High resistivity 200 um-thick substrate
e 3D micromachined structures e Electronics inside the pixel

. with ~ 1 mm? pitch
e ~100 ps time resolution
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The CMOS family for fast timing

ARCAD IA Sensor nodes

e Based on
®
e Manufactured devices: 100- and 300-pm thick n-type active substrate
25 and 50 ym pitch
e Under study: 25-, 35-, 50-um thick active substrate
10 and 50 pm pitch High Resistiviy S

—

ARCADIA simulations

w
o

Latest simulations on new 50-pm pitch design:

5
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e Uniform electric field
* Thinner substrates have a better timing
resolution, down to
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—&— Sensor thickness 25um ‘! TO be prOduced I
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SiGe BICMOS

SiGe BICMOS benefit from the excellent properties of Silicon-Germanium, very fast and low-noise

® Based on Already producedl
® o = o o o o LVIGND ® LV/GND " =RV
Pixel matrix integrated inside the guardrl.ng — |y — —
. e [ — '
® 60 um-thick active substrate ptype substrat
® ~50 ps time resolution
4 N R
With avalanche Without
gain avalanche gain
"~ A N J ] ] ]
/ \ Future evolution of the SiGe BICMOS technology:
4 R 4 R
Sub-geiger mode Monolithic
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3D sensors

Collecting electrodes are placed close to the carriers generated by impinging particles
—> Separation of drift time and amount of charge

® Small pixels S T

— A 7 A
. d dh -
® Thick active volume ot ! o !
e ~100% fill factor ; : b5
. L ’ i
® High radiation tolerance due to small cells c '] st =
—— detection efficiency unchanged up to 3¢16 neq/cmz ! } _«'*O‘h’ !
—» tested working devices up to 3e17 n,/cm” i :
Planar: A = L 3D: A >> L

3D sensors optimization for timing measurements:
designed to achieve and
— column and trench electrodes
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Timing with 3D sensors: column 3D

Column 3D Trench 3D
® High resistivity 300 uym-thick substrate TimeSPOT project
® 10 pum wide columns ® 150 pm-thick active substrate -
® Electric field proportionalto 1/r ® 55 %55 um?* pixels "
® 25 x 25 um? and 50 x 50 um? cells ® 135 um deep electrode
@
Time resolution measured for single cell:
+ ~13 ps with 25 x 25 um? cell Time resolution measurements: \
+ ~32 ps with 50 x 50 um?* cell + ~18 ps from FE electronics . g
+ ~15 ps from intrinsic resolution " )

on detector performance
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Conclusions

Timing information will be fundamental for to perform particle identification
and correctly benchmark tracking of single events in high density environments

Requirements for new timing detectors:

® Timing resolution of
[

o
O and

Silicon sensors can meet the requirements with innovative technologies recently developed:

® : Low Gain Avalanche Diodes chosen by the CMS Endcap Timing Layer
° : CMOS MAPS will instrument ALICE3 Time-of-Flight detector
[

Many active projects working on further new technologies such as Monolithic Avalanche Diodes
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@88 Working on UFSDs...
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Impact of timing information

Timing layers will improve experiments performances in terms of pile up rejection and particle identification

Multiple events occurring in the same point Poor resolution to separate different particles
In space but at different times with present detectors
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