

Colloidal Solutions of Gold Nanoparticles as Colorimetric Immunosensors for Fast Detection of SARS-CoV-2

<u>Raffaele Velotta</u>, Bartolomeo Della Ventura and Antonio Minopoli

Dipartimento di Fisica Ettore Pancini – Università di Napoli Federico II

Outline

- Tests in the context of Covid-19 pandemics
- Rapid test technology (most spread): Lateral Flow Assay (LFA)
- Alternative technology (for antigenic test): colorimetric biosensor
- Physical modelling
- Perspectives (saliva and other)

Health workers carry out mass screening using rapid antigen tests at a school in France.

Scientists still debate whether millions of cheap, fast diagnostic kits will help control the pandemic. Here's why. **By Giorgia Guglielmi**

Guglielmi, G. Nature 590, 202–205 (2021).

HOW COVID-19 TESTS WORK

Two kinds of coronavirus test look for viral material. A third examines the immune response to infection.

*The chance that a test result is a true positive or a true negative depends not only on a test's own reliability, but also on background rates of infection, and on whether a person shows symptoms.

Lateral Flow Assay

Koczula, K. M. & Gallotta, A.

Lateral flow assays. *Essays Biochem.* **60**, 111–120 (2016).

LFA for COVID-19 (serological and antigenic)

Mahmoudinobar, F., Britton, D. & Montclare, J. K. Protein-based lateral flow assays for COVID-19 detection. *Protein Eng. Des. Sel.* **34**, 1–10 (2021).

Localized Surface Plasmon Resonance

FOR SUB-WAVELENGTH PARTICLES, THE ABSORPTION INTENSITY DOMINATES OVER THE SCATTERING EFFICIENCY.

Colorimetric biosensing by LSPR

Gold NP functionalization

Marzia Iarossi,^{†,||} Chiara Schiattarella,^{†,‡} Ilaria Rea,[‡] Luca De Stefano,[‡] Rosalba Fittipaldi,[§] Antonio Vecchione,[§] Raffaele Velotta,^{*,†}[©] and Bartolomeo Della Ventura[†]

Detection of 17 β -estradiol (E2) in tap water by AuNPs

E2 detected in the range of 1-50 pg/mL.

Minopoli et al., Sensors and Actuators B: Chemical, 308, 127699 (2020)

Detection of SARS-CoV-2 in nasal and throat swabs

Della Ventura et al., ACS Sensors, 2020, 5, 3043-3048

Detection of SARS-CoV-2 in nasal and throat swabs

Della Ventura et al., ACS Sensors, 2020, 5, 3043-3048

Modeling the colorimetric biosensor

Minopoli et al., AIP Advances 11, 065319 (2021)

Simulation: extinction spectra and dose-response curve

Reading at 560 is optimal,

in full agreement with the experiment.

Complete coating matters

Minopoli et al., AIP Advances 11, 065319 (2021)

Key step in biosensing: functionalization procedure

Aimed features:

- effective
- fast

KEY STEP IN BIOSENSING: FUNCTIONALIZATION PROCEDURE

- Photochemical Immobilization Technique
- cheap
- reliable (reproducible)

Della Ventura, et al. *Analyst* **144** (23), 6871-6880 (2019) R. Funari, et al. *Langmuir* **32**, 8084-8091 (2016)

SALIVA (patent pending)

Clinical validation

First study Napoli, January 2021

- 100 specimen (70 negatives, 30 positives with **Ct <u><</u>30**)
- Reference standard RT-PCR
- Specificity 99% (69/70)
- Sensitivity 90% (27/30)

		RT-PCR		
		Positive	Negative	Total
TGS VELOX Ag Saliva	Positive	27	1	28
	Negative	3	69	72
	Total	30	70	100

		RT-PCR		
		Positive	Negative	Total
TGS VELOX Ag Saliva	Positive	89	4	93
	Negative	1	119	120
	Total	90	123	213

- 213 specimen (120 negatives, 93 positives with Ct < 30)
- Reference standard RT-PCR
- Specificity 99% (119/120)
- Sensitivity 96% (89/93)

Second study					
Rome,	March 2021				

CONCLUSIONS

- Colorimetric immunosensor sensitive to "virion"
- Good performances against SARS-CoV-2
- Photochemical Immobilization Technique (PIT) is a powerful tool for (gold) surface functionalization

... and PERSPECTIVES

- Rapid test with saliva
- Application to other viruses

Co-authors

Bartolomeo Della Ventura, RTDa

Antonio Minopoli, Post-doc