107 National Congress 13-17 Settembre, 2021 (virtual)

SEZIONE 2
Fisica della materia

Metastability and signatures of topology in open quadratic bosonic dynamics

Lorenza Viola

Dept. Physics & Astronomy
Dartmouth

Vincent P. Flynn

Dartmouth

Emilio Cobanera

SUNY Poly & Dartmouth

Prelude...

Challenge: To fully characterize the roles of topology in quantum phases of matter and light – naturally occurring and engineered, in equilibrium and beyond...

- ❖ Fundamental and [growing!] practical significance across quantum science can topology
 - → Provide an organizing principle for classification (beyond Landau's paradigm)?
 - → Mandate the existence of protected edge/surface localized states with exotic properties?...
 - → Enable new types of device applications (quantum sensors, amplifiers, lasers)?...
 - → Point to novel approaches for robust quantum information storage and processing?...

Qi & Zhang, RMP 83 2011... Chiu et al, ibid 88 2016 ... Ozawa et al, ibid. 91 2019

DARTMOUTH 1/9

Prelude...

Challenge: To fully characterize the roles of topology in quantum phases of matter and light – naturally occurring and engineered, in equilibrium and beyond...

- Fundamental and [growing!] practical significance across quantum science can topology
 - → Provide an organizing principle for classification (beyond Landau's paradigm)?
 - → Mandate the existence of protected edge/surface localized states with exotic properties?...
 - → Enable new types of device applications (quantum sensors, amplifiers, lasers)?...
 - → Point to novel approaches for robust quantum information storage and processing?...

Qi & Zhang, RMP 83 2011... Chiu et al, ibid 88 2016 ... Ozawa et al, ibid. 91 2019

Stepping stone: Symmetry-protected topological (SPT) phases

- → Phases of particle-non-conserving fully gapped, stable free-fermion (mean-field) Hamiltonians
- → Fully topologically classified ⇒ 'tenfold way'
 - 1-1 correspondence between distinct ensembles of Bloch Hamiltonians and distinct SPT phases
 - Bulk-boundary correspondence: Relation between bulk topological invariants and appearance of protected boundary zero modes...

TABLE VI. Symmetry classes that support topologically nontrivial line defects and their associated protected gapless modes.

Symmetry	Topological classes	1D gapless fermion modes
A	\mathbb{Z}	Chiral Dirac
D	\mathbb{Z}	Chiral Majorana
DIII	\mathbb{Z}_2	Helical Majorana
AII	\mathbb{Z}_2^-	Helical Dirac
С	2ℤ	Chiral Dirac

Chiu et al, RMP 88 2016

DARTMOUTH 1/9

Prelude...

Challenge: To fully characterize the roles of topology in quantum phases of matter and light – naturally occurring and engineered, in equilibrium and beyond...

- Fundamental and [growing!] practical significance across quantum science can topology
 - → Provide an organizing principle for classification (beyond Landau's paradigm)?
 - → Mandate the existence of protected edge/surface localized states with exotic properties?...
 - → Enable new types of device applications (quantum sensors, amplifiers, lasers)?...
 - → Point to novel approaches for robust quantum information storage and processing?...

Qi & Zhang, RMP 83 2011... Chiu et al, ibid 88 2016 ... Ozawa et al, ibid. 91 2019

Stepping stone: Symmetry-protected topological (SPT) phases

- → Phases of particle-non-conserving fully gapped, stable free-fermion (mean-field) Hamiltonians
- → Fully topologically classified ⇒ 'tenfold way'
 - 1-1 correspondence between distinct ensembles of Bloch Hamiltonians and distinct SPT phases
 - Bulk-boundary correspondence: Relation between bulk topological invariants and appearance of protected boundary zero modes...

DARTMOUTH 1/

Motivation: SPT phases of free bosons

Q1: What are equivalent results for *fully gapped, stable free-boson* Hamiltonians? Q2: Are there topologically mandated bosonic zero modes?...

No-go theorems can be proved for any thermodynamically stable (bounded from below) quadratic bosonic Hamiltonian (QBH)

$$H=H^\dagger\equivrac{1}{2}\Phi^\dagger\mathbf{H}\Phi,\quad \Phi\equiv[a_1,a_1^\dagger,\ldots,a_N,a_N^\dagger]^T,\quad \mathbf{H}=\mathbf{H}^\dagger,\mathbf{H}>0$$

- (1) No parity switches: The boson parity of the ground state is always even.
- (2) No non-trivial SPT phases: All Hamiltonians are adiabatically connected regardless of the choice of protecting symmetries.
- (3) No localized zero modes: The system subject to open boundary conditions cannot develop localized zero modes (zero is not in the spectrum).

<u>Obstruction</u>: Stability constraint $\mathbf{H}>0$ implies many-body gap – no counterpart for fermions...

Xu, Flynn, Alase, Cobanera, LV & Ortiz, PRB 102 2020.

DARTMOUTH 2/9

Motivation: SPT phases of free bosons

Q1: What are equivalent results for *fully gapped, stable free-boson* Hamiltonians? Q2: Are there topologically mandated bosonic zero modes?...

No-go theorems can be proved for any thermodynamically stable (bounded from below) quadratic bosonic Hamiltonian (QBH)

$$H=H^\dagger\equivrac{1}{2}\Phi^\dagger\mathbf{H}\Phi,\quad \Phi\equiv[a_1,a_1^\dagger,\ldots,a_N,a_N^\dagger]^T,\quad \mathbf{H}=\mathbf{H}^\dagger,\mathbf{H}>0$$

- (1) No parity switches: The boson parity of the ground state is always even.
- (2) No non-trivial SPT phases: All Hamiltonians are adiabatically connected regardless of the choice of protecting symmetries.
- (3) No localized zero modes: The system subject to open boundary conditions cannot develop localized zero modes (zero is not in the spectrum).

Non-trivial manifestations of topology can emerge in equilibrium if one allows for gapless phases, strong (beyond mean-field) interactions, or instabilities...

Ozawa et al, RMP **91** 2019; Chen et al, Science **338** 2012, Bardyn & Imamoglu, PRL **109** 2012; Peano et al, Nat. Comm. **7** 2016, McDonald et al, PRX **9** 2018; Flynn, Cobanera & LV, NJP **22** 2020...

DARTMOUTH 2/9

Topology beyond closed systems...

- ❖ Topological phenomena have been and increasingly are being characterized away from equilibrium, in the context of non-unitary, open quantum dynamics:
 - → Semiclassical Non-Hermitian effective Hamiltonians...

Minganti et al, PRA **100** 2019... McDonald & Clerk, Nat. Comm. **11** 2020; Bergholtz et al, RMP **93** 2021; Liu et al, arXiv 2104.07335...

→ Fully quantum – Markovian dynamics, via Lindblad or input-output formalism...

Diehl et al, Nat. Phys. **7** 2011; Bardyn & Imamoglu, PRL **109** 2012; Porras & Fernandez-Lorenzo, PRL **122** 2019; Wanjura et al Nat. Comm. **11** 2020...

DARTMOUTH 3/9

Topology beyond closed systems...

- ❖ Topological phenomena have been and increasingly are being characterized away from equilibrium, in the context of non-unitary, open quantum dynamics:
 - → Semiclassical Non-Hermitian effective Hamiltonians...

Minganti et al, PRA **100** 2019... McDonald & Clerk, Nat. Comm. **11** 2020; Bergholtz et al, RMP **93** 2021; Liu et al, arXiv 2104.07335...

→ Fully quantum – Markovian dynamics, via Lindblad or input-output formalism...

Diehl et al, Nat. Phys. **7** 2011; Bardyn & Imamoglu, PRL **109** 2012; Porras & Fernandez-Lorenzo, PRL **122** 2019; Wanjura et al Nat. Comm. **11** 2020...

- Q1': Are there SPT phases for non-interacting dissipative bosonic systems?
 Q2': Are there topologically mandated analogues of Majorana fermions?...
 - → Case study: Driven-dissipative Markovian dynamics, described by Lindblad master equation ⇒ Quadratic Bosonic Lindbladian (QBLs)

<u>Key insight</u>: Shift focus from steady-state to transient behavior \Rightarrow Metastable QBLs

Flynn, Cobanera & LV, ''Topology by dissipation: Majorana bosons in metastable quadratic Markovian dynamics,'' arXiv:2104.03985.

DARTMOUTH 3/9

Quadratic bosonic Lindbladians

❖ For a QBL on N-mode bosonic Fock space, the Hamiltonian and dissipative components are at most quadratic in the canonical annihilation/creation operators:

$$\dot{
ho}(t) = \mathcal{L}(
ho(t)), \quad \dot{A}(t) = \mathcal{L}^{\star}(A(t)) \qquad \mathcal{L} \equiv \mathcal{L}(H, \{L_k\})$$
 $\dot{A}(t) = i[H, A(t)] + \sum_{i,j=1}^{2N} \mathbf{M}_{ij} \Big(\Phi_i^{\dagger} A(t) \Phi_j - rac{1}{2} \left\{\Phi_i^{\dagger} \Phi_j, A(t)
ight\}\Big)$

→ Equations of motion of linear observables are determined by the dynamical matrix

$$\mathbf{G} \equiv \tau_3 \mathbf{H} - i \tau_3 (\mathbf{M} - \tau_1 \mathbf{M}^T \tau_1) / 2$$

DARTMOUTH 4/

Quadratic bosonic Lindbladians

 \diamond For a QBL on N-mode bosonic Fock space, the Hamiltonian and dissipative components are at most quadratic in the canonical annihilation/creation operators:

$$\dot{
ho}(t) = \mathcal{L}(
ho(t)), \quad \dot{A}(t) = \mathcal{L}^{\star}(A(t)) \qquad \mathcal{L} \equiv \mathcal{L}(H, \{L_k\})$$
 $\dot{A}(t) = i[H, A(t)] + \sum_{i=1}^{2N} \mathbf{M}_{ij} \Big(\Phi_i^{\dagger} A(t) \Phi_j - \frac{1}{2} \Big\{\Phi_i^{\dagger} \Phi_j, A(t)\Big\}\Big)$

→ Equations of motion of linear observables are determined by the dynamical matrix

$$\mathbf{G} \equiv \tau_3 \mathbf{H} - i \tau_3 (\mathbf{M} - \tau_1 \mathbf{M}^T \tau_1) / 2$$

- \clubsuit A QBL is dynamically stable if expectation value of any observable in any state is bounded $\forall t$.
 - \rightarrow If G is diagonalizable, \mathcal{L} is as well, and its spectrum follows from the rapidity spectrum, $\sigma(-i\mathbf{G}) \equiv \{ \operatorname{Eig}(-i\mathbf{G}) \}$
 - \rightarrow Sufficient condition for stability: $-i\mathbf{G}$ is a Hurwitz matrix, i.e., $\operatorname{Re}(\sigma(-i\mathbf{G})) < 0$. The dynamics then converges to a unique, Gaussian steady state, $\mathcal{L}(
 ho_{\mathrm{ss}})=0$.

Prosen, NJP 10 2008; Prosen & Seligman, JPA 43 2010.

→ For a stable QBL, the convergence to the steady state is exponential, with worst-case distance upper-bounded by the mixing time:

$$d_{\max}(t) \equiv \sup_{\rho(0)} ||\rho(t) - \rho_{\rm ss}|| \le K e^{-\Delta_{\mathcal{L}} t}, \quad d_{\max}(t_{\min}(\delta)) < \delta$$

DARTMOUTH

Quadratic bosonic Lindbladians: Model systems

- * Focus on one-dim QBLs, that are translation-invariant up to boundary conditions (BCs):
 - \rightarrow The dynamical matrix **G** is block-Toeplitz under OBCs, and block-circulant under PBCs.
 - \rightarrow The rapidities for PBC form closed curves, rapidity bands, as $N \rightarrow \infty$.
- Illustrative setting: Bosonic Kitaev chain with Markovian dissipation

$$H_{
m BKC} = rac{i}{2} \sum_{j=1}^{N-1} \Bigl(J a_{j+1}^\dagger a_j + \Delta a_{j+1}^\dagger a_j^\dagger \Bigr) + rac{i \mu}{2} \sum_{j=1}^N (a_j^\dagger)^2 + {
m H.c.}$$

J: NN hopping Δ: Non-degenerate PA μ: Degenerate PA

- → This QBH is never thermodynamically stable. Construct two QBLs that differ in the dissipator:
 - > **Model 1:** Add uniform onsite dissipation to the BKC, with strength $\kappa > 0$;

DARTMOUTH 5/9

Quadratic bosonic Lindbladians: Model systems

- * Focus on one-dim QBLs, that are translation-invariant up to boundary conditions (BCs):
 - \rightarrow The dynamical matrix **G** is block-Toeplitz under OBCs, and block-circulant under PBCs.
 - \rightarrow The rapidities for PBC form closed curves, rapidity bands, as $N \rightarrow \infty$.
- ❖ Illustrative setting: Bosonic Kitaev chain with Markovian dissipation

$$H_{ ext{BKC}} = rac{i}{2} \sum_{j=1}^{N-1} \Bigl(J a_{j+1}^\dagger a_j + \Delta a_{j+1}^\dagger a_j^\dagger \Bigr) + rac{i \mu}{2} \sum_{j=1}^N (a_j^\dagger)^2 + ext{H.c.}$$

J: NN hopping Δ: Non-degenerate PA μ: Degenerate PA

- → This QBH is never thermodynamically stable. Construct two QBLs that differ in the dissipator:
 - > Model 1: Add uniform onsite dissipation to the BKC, with strength $\kappa > 0$;
 - > **Model 2:** Add next-nearest-neighbor dissipation to Model 1, with strength $\Gamma > \kappa/2$.

DARTMOUTH 5/9

Metastable QBLs

- \diamond If a QBL is dynamically stable for OBCs and unstable for PBCs \Rightarrow OBC system is metastable.
 - \rightarrow Dynamical metastability need not be captured by spectral properties since G is not normal \Rightarrow Appropriate mathematical tool is provided by pseudospectra:

$$\sigma_{\epsilon}(\mathbf{X}) \equiv \{\lambda \in \mathbb{C} : \exists \vec{v}, ||v|| = 1, ||(\mathbf{X} - \lambda \mathbf{1})\vec{v}|| < \epsilon\}$$

Trefethen & Embree, Spectra and Pseudospectra (2005).

- → The semi-open (infinite-size) limit of a metastable QBL is dynamically unstable.
- Dynamical metastability elicits distinctive features in the relaxation dynamics:

Metastable

(1) Divergent mixing times: For a metastable QBL, the mixing time diverges with system size...

 $t_{\rm mix}(\delta, N) \gtrsim t_{\rm lin}(\delta, N) \sim O(N)$

(2) Transient directional amplification: Observable expectations may be exponentially amplified...

DARTMOUTH

 $\langle x_N
angle_t$ $\Gamma = 0$ **Unconditionally stable** 15 10 κt

Hunting for Majoranas...

Q1': Are there equivalent of SPT phases for non-interacting dissipative bosonic systems? Q2': Are there topologically mandated analogues of Majorana fermions?...

- The steady state is unique and Gaussian, but is hard to reach. Look in the transient regime!
 - → <u>Hint:</u> Approximate zero modes (ZMs) exist in the BKC Hamiltonian but not in a stable regime...

$$J=\Delta: \quad \gamma_L=\sum_{j=1}^N \delta_0^{j-1} x_j, \quad \gamma_R=\sum_{j=1}^N \delta_0^{N-j} p_j, \quad \delta_0\equiv -rac{\mu}{J}.$$

→ Adding uniform dissipation (Model 1) gives localized approximately conserved ZMs, precisely when rapidity bands winds around zero – but they need not be canonically conjugate...

$$J=\Delta: \quad \gamma_L^{ ext{c}} \equiv \sum_{j=1}^N \delta_-^{j-1} x_j, \quad \gamma_R^{ ext{c}} \equiv \sum_{j=1}^N \delta_+^{N-j} p_j, \quad \delta_\pm \equiv -rac{\mu \pm \kappa}{J} \qquad \qquad egin{aligned} \mathcal{L}^\star(\gamma_L^{ ext{c}}) = -J \delta_-^N x_N \ \mathcal{L}^\star(\gamma_R^{ ext{c}}) = J \delta_+^N p_1 \end{aligned}$$

DARTMOUTH 7/9

Hunting for Majoranas...

Q1': Are there equivalent of SPT phases for non-interacting dissipative bosonic systems? Q2': Are there topologically mandated analogues of Majorana fermions?...

- The steady state is unique and Gaussian, but is hard to reach. Look in the transient regime!
 - → <u>Hint:</u> Approximate zero modes (ZMs) exist in the BKC Hamiltonian but not in a stable regime...

$$J=\Delta: \quad \gamma_L=\sum_{j=1}^N \delta_0^{j-1} x_j, \quad \gamma_R=\sum_{j=1}^N \delta_0^{N-j} p_j, \quad \delta_0\equiv -rac{\mu}{J}.$$

→ Adding uniform dissipation (Model 1) gives localized approximately conserved ZMs, precisely when rapidity bands winds around zero – but they need not be canonically conjugate...

$$J=\Delta: \quad \gamma_L^{ ext{c}} \equiv \sum_{j=1}^N \delta_-^{j-1} x_j, \quad \gamma_R^{ ext{c}} \equiv \sum_{j=1}^N \delta_+^{N-j} p_j, \quad \delta_\pm \equiv -rac{\mu \pm \kappa}{J} \qquad \qquad egin{aligned} \mathcal{L}^\star(\gamma_L^{ ext{c}}) = -J \delta_-^N x_N \ \mathcal{L}^\star(\gamma_R^{ ext{c}}) = J \delta_+^N p_1 \end{aligned}$$

* <u>Proposal</u>: Bosonic analogues of Majorana fermions are the pairs (γ_L^c, γ_R^s) , (γ_L^s, γ_R^c) , where the conjugate modes needed to form delocalized boson DOFs are the symmetry generators

$$\gamma_L^{ ext{s}} \equiv \sum_{j=1}^N \delta_+^{j-1} x_j, \quad \gamma_R^{ ext{s}} \equiv \sum_{j=1}^N \delta_-^{N-j} p_j, \qquad egin{aligned} \mathcal{L}^{\star}\left([\gamma_L^{ ext{s}},A]
ight) - [\gamma_L^{ ext{s}},\mathcal{L}^{\star}(A)] = -J \delta_+^N[x_N,A] \ \mathcal{L}^{\star}\left([\gamma_R^{ ext{s}},A]
ight) - [\gamma_R^{ ext{s}},\mathcal{L}^{\star}(A)] = J \delta_-^N[p_1,A] \end{aligned}$$

$$[\gamma_L^{ ext{c}}, \gamma_R^{ ext{s}}] = iN\delta_-^{N-1}, \; [\gamma_L^{ ext{s}}, \gamma_R^{ ext{c}}] = iN\delta_+^{N-1}$$

Majorana bosons (MBs)

DARTMOUTH 7/9

Topologically metastable QBLs

Metastability is necessary but not sufficient for MBs: Non-vanishing winding number of bulk rapidity spectrum at zero is additionally needed for topological metastability...

- ❖ Each conserved MB localized on one edge is paired, in general, with a distinct symmetry generator localized on the opposite edge − reflecting breakdown of Noether theorem...
 - → MBs are robust against disorder thanks to the robustness of pseudospectra.
 - \rightarrow The approximate MB symmetries γ^{S} imply the existence of a topologically sourced manifold of almost-degenerate quasi-steady states...

DARTMOUTH 8/9

Topologically metastable QBLs

Metastability is necessary but not sufficient for MBs: Non-vanishing winding number of bulk rapidity spectrum at zero is additionally needed for topological metastability...

- * Each conserved MB localized on one edge is paired, in general, with a distinct symmetry generator localized on the opposite edge reflecting breakdown of Noether theorem...
 - → MBs are robust against disorder thanks to the robustness of pseudospectra.
 - \rightarrow The approximate MB symmetries γ^{S} imply the existence of a topologically sourced manifold of almost-degenerate quasi-steady states...
- Signatures of MBs emerge in the steady-state correlation functions of linear observables and their [Fourier] power spectra:

$$egin{aligned} C_{lpha,eta}(\infty, au) &= \mathrm{Tr}[lpha(au)eta(0)
ho_{\mathrm{ss}}] \ & \ \widetilde{S}_{lpha,eta}(\omega) &\equiv rac{S_{lpha,eta}(\omega)}{C_{lpha,eta}(\infty,0)} \end{aligned}$$

→ <u>Prediction</u>: MBs lead to zerofrequency peak, whose height diverges with system size...

DARTMOUTH 8/

Conclusions & Outlook

- ❖ Tight bosonic analogues to Majorana fermions 'halves-of-a-photon' (!) do exist and are linked to non-trivial bulk topology in metastable, open bosonic matter.
- In addition to anomalously slow relaxation and transient amplification, Majorana bosons manifest through distinctive signatures in steady-state zero-frequency spectra.
- ❖ Topological metastability is also tied to the existence of a continuum of quasi-steady states which can have non-zero first moments and can support long-lived non-Gaussianity...
- Our results point to transient metastable regimes as a new route to search for and realize SPT phases of non-interacting bosonic systems.
- (Some) Outstanding questions:
 - → Nature and extent of symmetry protection mechanism?...
 - → Extensions to higher-dimensional (2D) systems?...
 - → Significance of the [generic] split between ZM and symmetry generator?...
 - → Topological classification and dissipative bulk-boundary correspondence?...
 - → Relevance to CV quantum information processing?...
 - → Experimental implementations in AMO/photonic/SC platforms?...

Grazie per l'attenzione!

DARTMOUTH 9/