

The CUPID and LEGEND double-beta decay experiments

<u>Katharina von Sturm</u> - INFN Sezione di Padova - vonsturm@pd.infn.it Guido Fantini - Università di Roma La Sapienza e INFN Sezione di Roma - guido.fantini@uniroma1.it 107º Congresso Nazionale della Società Italiana di Fisica 13th - 17th September 2021

Neutrinoless double beta decay

 $(A,Z) \longrightarrow (A,Z+2) + 2 e^{-} + 2 \overline{v}$

Double beta decay with neutrinos in the final state

 $(A,Z) \longrightarrow (A,Z+2) + 2 e^{-} \Delta L = 2 \longrightarrow beyond SM$

Neutrinoless double beta decay

Standard Mechanism: light Majorana neutrino exchange

Non-standard mechanism: heavy neutrinos, RH currents, supersymmetric particle, etc.

Neutrinoless double beta decay

 $(A,Z) \longrightarrow (A,Z+2) + 2 e^{-} + 2 \overline{v}$

Double beta decay with neutrinos in the final state

 $(A,Z) \longrightarrow (A,Z+2) + 2 e^{-} \Delta L = 2 \longrightarrow beyond SM$

Neutrinoless double beta decay

Standard Mechanism: light Majorana neutrino exchange

Non-standard mechanism: heavy neutrinos, RH currents, supersymmetric particle, etc.

Neutrinoless double beta decay

 $(A,Z) \longrightarrow (A,Z+2) + 2 e^{-} + 2 \overline{\nu}$

Double beta decay with neutrinos in the final state

 $(A,Z) \longrightarrow (A,Z+2) + 2 e^{-} \Delta L = 2 \longrightarrow beyond SM$

Neutrinoless double beta decay

Standard Mechanism: light Majorana neutrino exchange

Non-standard mechanism: heavy neutrinos, RH currents, supersymmetric particle, etc.

Parameter Space in the standard picture

three flavour oscillation parameters from [NuFit v4.1 (ww.nu-fit.org)]

CUORE, arXiv: 2104:06906 GERDA, Phys. Rev. Lett. 125, 252502 (2020)

GERDA Phase II and MJD

LEGEND builds on the successful GERDA and MJD experiments

MJD - Majorana Demonstrator

- operation of Ge crystals in vacuum cryostat, ultra-clean underground electroformed copper
- SURF (South Dakota) until 2020
- ΔΕ: **2.53 keV** (FWHM at Q_{bb})
- BI: 4.7 x 10⁻³ cts / (kg keV yr)

GERDA - Germanium Detector Array

- operation of bare Ge crystals immersed in LAr, LAr scintillation for active veto
- LNGS (Italy) until Nov 2019
- ΔE : 2.6 keV (BEGe FWHM at Q_{bb})
- BI: 5.2 x 10⁻⁴ cts / (kg keV yr)

GERDA

MID

 $T_{1/2} > 2.7 \text{ x } 10^{25} \text{ yr} (m_{bb} < 200-433 \text{ meV})$

Phys. Rev. C 100, 025501 (2019)

Phys. Rev. Lett. 125, 252502 (2020)

5

LEGEND-200 status

- upgrade existing infrastructure at LNGS to 200 kg detector mass
- under construction
 - ICPC detector production from enr. ⁷⁶Ge (92%)
 - LAr veto system improved
 - improved radio-purity: underground electroformed copper, Copper-Kapton laminated cables
 - optically active structural material
- start commissioning end of 2021

projected background **0.5 cts/(FWHM t yr)** ~1/3 wrt Gerda Phase II

5 yr sensitivity
$$T_{1/2} > 10^{27}$$
 yr ($m_{bb} < 34-78$ meV)

pCDR: arXiv:2107.11462

LEGEND background rejection

passive

- underground lab
- shielding
- clean construction materials

LNGS - 3800 mwe

underground electroformed

copper

- passive shields
- copper
- LAr

energy resolution MID

LEGEND background rejection

stun 5000

õ 2000

1000

500

200 100

50

passive

energy resolution

- energy resolution MJD
 2.53 keV @ Q_{bb}
- detector production
 Legend-200 mean vacuum
 2.19 keV <FWHM> @ Qbb
- 2nbb is not a background for LEGEND-200

LEGEND background rejection

passive

energy resolution

pulse shape discrimination

• reject γ - and α -backgrounds

LEGEND background rejection

1 Ar veto

suppression

passive

energy resolution

pulse shape discrimination

Liquid Argon (LAr) veto

- light-guiding fibers coupled to SiPMs
- LAr 128 nm scintillation light
- optically active polyethylene naphthalate (PEN) holder plates: shifts 128 nm to ~440 nm and scintillates
- teflon reflector for better light collection
- LAr quality monitoring & purification

Going tonne scale LEGEND-1000

- LEGEND-1000 is designed with 4x LEGEND-200 reentrant tubes
- UgLAr inside reentrant tubes
- all LAr volumes instrumented with veto system
- baseline laboratory SNOLAB
- possibility to build LEGEND-1000 at LNGS is investigated

EPJC volume 78, 597 (2018)

"Virtual depth by active background suppression: revisiting the cosmic muon induced background of GERDA PhaseII"

10 yr target sensitivity $T_{1/2} > 1.6 \times 10^{28} \text{ yr} (m_{bb} < 9.19 \text{ meV})$

pCDR: arXiv:2107.11462

Bolometric technique

Cryogenic detectors ~ 10 mK operating temperature

Low heat capacity \rightarrow very temperature sensitive $\Delta T \sim E/C$

Neutron Transmutation Doped Ge thermistor (NTD) \rightarrow resistance depends on temperature

Good energy resolution (~0.2% FWHM)

CUORE experience

Custom dry dilution refrigerator 988 ^{nat}TeO₂ crystals @ ~10mK 34% isotopic abundance (206 kg ¹³⁰Te) Outer + inner roman lead shielding Background index @ $Q_{\beta\beta} \sim 1.49 \ 10^{-2} \text{ cts/(keV kg yr)}$ Running since 2017, collected > 1 tonne.yr exposure $T_{1/2}$ (¹³⁰Te) > 2.2x10²⁵ yr (m_{BB} < 90-305 meV)

2490 2500 2510 2520 2530 2540

2550 2560 2570

Energy (keV

Particle identification is needed

- Most of the background comes from partly-contained α particles from U/Th chains
- Q-value > 2.6 MeV (82 Se / 100 Mo) reduces β/γ background by ~2 orders of magnitude
- Remaining dominant contribution: muons (active veto)

ROI - External sources

CUPID, pre-CDR arXiv: 1907.09376

Particle IDentification (PID): dual readout

CUPID-0 (82Se)

- 26 ZnSe crystals (24 enriched 95% in ⁸²Se)
- CUORICINO cryostat @ LNGS
- PID via pulse shape
- 16.59 kg yr exposure (phase I + II)
- ~ 20 keV resolution
- Background
 Phase I ~ 3.5 10⁻³ cts/(keV kg yr)
 Phase II ~ 5.5 10⁻³ cts/(keV kg yr)
- $T_{1/2} (^{82}Se) > 4.7 \ 10^{24} \text{ yr}$ ($m_{\beta\beta} < 276-570 \text{ meV}$) $Preliminary (TAUP_{21})$

CUPID-0, PRL <u>123</u> (2019) 032501 CUPID-0, NIM, A 958 (2020) 162441 CUPID-0, PRL 123 (2019) 262501

CUPID-Mo (¹⁰⁰Mo)

- 20 cylindrical Li₂MO₄ crystals
- 20 Ge wafers as light detectors
- > 95% enrichment, ~2.6 kg (¹⁰⁰Mo)
- EDELWEISS cryostat (~21 mK)
- Laboratoire Souterrain de Modane (LSM)
- Resolution @ $Q_{\beta\beta} \sim 7.4$ keV FWHM Background O(10⁻³) cts/(keV kg yr)

r Preliminary (TAUP21) $T_{1/2}$ (¹⁰⁰Mo) > 1.8 10²⁴ yr ($m_{\beta\beta}$ < 280-490 meV)

CUPID

- 1500 Li₂MO₄ 45x45x45 mm³ crystals
- > 95% enrichment \rightarrow ~ 250 kg (¹⁰⁰Mo)
- CUORE cryogenic infrastructure
- simpler tower structure (test in progress)
- Dual readout (particle identification)
- Target resolution: 5 keV FWHM
- Target background: 10⁻⁴ cts/ (keV kg yr)
- Target sensitivity > 10^{27} yr (m_{BB}~ 12-20 meV)

CUPID, arXiv:1907.09376 CUPID, EPJ C 81 (2021) 2, 104 CUPID, arXiv:2011.11726 CUPID, JINST 16 (2021) 02, P02037

Conclusion

Next 0nbb experiments at LNGS

Legend-200 will start commissioning end of 2021

5 yr exclusion sensitivity $T_{1/2} > 10^{27}$ yr (m_{bb} < 34-78 meV)

possibility for **Legend-1000** at LNGS under study (ongoing DoE review process)

10 yr discovery sensitivity T $_{1/2}$ > 1.3x10²⁸ yr (m $_{bb}$ < 9-21 meV)

CUPID under DoE review process

10 yr discovery sensitivity $T_{1/2} > 1.1 \times 10^{27}$ yr (m_{bb} < 12-20 meV)

minimum of m_{bb} roughly between 14 meV and 22 meV for inverted hierarchy

Thanks for your attention!

- 2nbb is rare decay with longest half lives ever measured 10¹⁸-10²⁴ yr
- Onbb even worse > 10^{26} yr

Let's look at some formulas

age of the universe 10⁹ yr this is an awfully long time

Isotopic abundance

- enrichment
- isotope selection

Energy resolution

- development
- not much that can be done

Efficiency

• preferred: source = detector

Time

• be patient

Mass

spend more money
 -> go tonne scale

Background sources

Natural radioactivity

- clean and sparse construction
- shielding
- isotope selection for high Q-value (above 2.6 MeV)

Cosmic muons

• Underground laboratories

Neutrons

• specific shielding (water, PE)

Long lived cosmogenic isotopes

store detectors (and construction materials) underground

LEGEND Numbers

TABLE IV. Experimental parameters in the LEGEND-1000 discovery potential and background projections.

Parameter	Value		
Performance Parameters			
$0\nu\beta\beta$ decay isotope	76 Ge		
Q_{etaeta}	2039 keV		
Total mass	1000 kg		
Energy resolution at $Q_{\beta\beta}$	2.5 keV FWHM		
Overall signal acceptance ^a	0.69		
Live time goal	10 yr		
Total exposure goal	10 tyr		
Background goal	$<1\times10^{-5}{\rm cts}/({\rm keVkgyr})$		
	$<0.025{\rm cts}/({\rm FWHMtyr})$		
$T^{0 u}_{1/2}$	$1.3\times 10^{28}{\rm yr}$ (99.7% CL discovery)		
	$1.6 \times 10^{28} \mathrm{yr} \ (90\% \mathrm{CL} \mathrm{sensitivity})$		
m_{etaeta}	$9.4{-}21.4\mathrm{meV}$ (99.7% CL discovery)		
	$8.519.4\mathrm{meV}$ (90% CL sensitivity)		
Physics Parameters			
$M_{0 u}$	2.66–6.04 [28, 37]		
$G_{0 u}$	$2.363 \times 10^{-15} /\mathrm{yr}$ [22]		
g_A	1.2724		

CUPID Numbers

Table 10: Parameters of the CUPID detector in the baseline scenario, in the optimistic background scenario, and for a large bolometric detector with 1 metric ton of 100 Mo isotope.

Parameter	CUPID Baseline	CUPID-reach	CUPID-1T
Crystal	${\rm Li_2^{100}MoO_4}$	$\mathrm{Li}_2{}^{100}\mathrm{MoO}_4$	${\rm Li_2^{100}MoO_4}$
Detector mass (kg)	472	472	1871
100 Mo mass (kg)	253	253	1000
Energy resolution FWHM (keV)	5	5	5
Background index $(counts/(keV \cdot kg \cdot yr))$	10^{-4}	$2 imes 10^{-5}$	$5 imes 10^{-6}$
Containment efficiency	79%	79%	79%
Selection efficiency	90%	90%	90%
Livetime (years)	10	10	10
Half-life exclusion sensitivity (90% C.L.)	$1.5 imes 10^{27} ext{ y}$	$2.3 imes 10^{27} { m y}$	$9.2 imes 10^{27} { m y}$
Half-life discovery sensitivity (3σ)	$1.1 \times 10^{27} \text{ y}$	$2 \times 10^{27} { m y}$	$8 \times 10^{27} { m y}$
$m_{\beta\beta}$ exclusion sensitivity (90% C.L.)	1017 meV	8.214 meV	$4.16.8~\mathrm{MeV}$
$m_{\beta\beta}$ discovery sensitivity (3 σ)	1220 meV	$8.815~\mathrm{meV}$	$4.47.3~\mathrm{meV}$

Teflon Reflector

